70 research outputs found

    Low Reynolds number hydrodynamics of asymmetric, oscillating dumbbell pairs

    Full text link
    Active dumbbell suspensions constitute one of the simplest model system for collective swimming at low Reynolds number. Generalizing recent work, we derive and analyze stroke-averaged equations of motion that capture the effective hydrodynamic far-field interaction between two oscillating, asymmetric dumbbells in three space dimensions. Time-averaged equations of motion, as those presented in this paper, not only yield a considerable speed-up in numerical simulations, they may also serve as a starting point when deriving continuum equations for the macroscopic dynamics of multi-swimmer suspensions. The specific model discussed here appears to be particularly useful in this context, since it allows one to investigate how the collective macroscopic behavior is affected by changes in the microscopic symmetry of individual swimmers.Comment: 10 pages, to appear in EPJ Special Topic

    Dumbbell transport and deflection in a spatially periodic potential

    Full text link
    We present theoretical results on the deterministic and stochastic motion of a dumbbell carried by a uniform flow through a three-dimensional spatially periodic potential. Depending on parameters like the flow velocity, there are two different kinds of movement: transport along a potential valley and stair-like motion oblique to the potential trenches. The crossover between these two regimes, as well as the deflection angle, depends on the size of the dumbbell. Moreover, thermal fluctuations cause a resonance-like variation in the deflection angle as a function of the dumbbell extension.Comment: 5 pages, 8 figure

    Hydrodynamic Synchronisation of Model Microswimmers

    Full text link
    We define a model microswimmer with a variable cycle time, thus allowing the possibility of phase locking driven by hydrodynamic interactions between swimmers. We find that, for extensile or contractile swimmers, phase locking does occur, with the relative phase of the two swimmers being, in general, close to 0 or pi, depending on their relative position and orientation. We show that, as expected on grounds of symmetry, self T-dual swimmers, which are time-reversal covariant, do not phase-lock. We also discuss the phase behaviour of a line of tethered swimmers, or pumps. These show oscillations in their relative phases reminiscent of the metachronal waves of cilia.Comment: 17 pages, 8 figure

    Influence of Hydrodynamic Interactions on Mechanical Unfolding of Proteins

    Full text link
    We incorporate hydrodynamic interactions in a structure-based model of ubiquitin and demonstrate that the hydrodynamic coupling may reduce the peak force when stretching the protein at constant speed, especially at larger speeds. Hydrodynamic interactions are also shown to facilitate unfolding at constant force and inhibit stretching by fluid flows.Comment: to be published in Journal of Physics: Condensed Matte

    Stochastic Eulerian Lagrangian Methods for Fluid-Structure Interactions with Thermal Fluctuations

    Full text link
    We present approaches for the study of fluid-structure interactions subject to thermal fluctuations. A mixed mechanical description is utilized combining Eulerian and Lagrangian reference frames. We establish general conditions for operators coupling these descriptions. Stochastic driving fields for the formalism are derived using principles from statistical mechanics. The stochastic differential equations of the formalism are found to exhibit significant stiffness in some physical regimes. To cope with this issue, we derive reduced stochastic differential equations for several physical regimes. We also present stochastic numerical methods for each regime to approximate the fluid-structure dynamics and to generate efficiently the required stochastic driving fields. To validate the methodology in each regime, we perform analysis of the invariant probability distribution of the stochastic dynamics of the fluid-structure formalism. We compare this analysis with results from statistical mechanics. To further demonstrate the applicability of the methodology, we perform computational studies for spherical particles having translational and rotational degrees of freedom. We compare these studies with results from fluid mechanics. The presented approach provides for fluid-structure systems a set of rather general computational methods for treating consistently structure mechanics, hydrodynamic coupling, and thermal fluctuations.Comment: 24 pages, 3 figure

    Filamentous Biopolymers on Surfaces: Atomic Force Microscopy Images Compared with Brownian Dynamics Simulation of Filament Deposition

    Get PDF
    Nanomechanical properties of filamentous biopolymers, such as the persistence length, may be determined from two-dimensional images of molecules immobilized on surfaces. For a single filament in solution, two principal adsorption scenarios are possible. Both scenarios depend primarly on the interaction strength between the filament and the support: i) For interactions in the range of the thermal energy, the filament can freely equilibrate on the surface during adsorption; ii) For interactions much stronger than the thermal energy, the filament will be captured by the surface without having equilibrated. Such a ‘trapping’ mechanism leads to more condensed filament images and hence to a smaller value for the apparent persistence length. To understand the capture mechanism in more detail we have performed Brownian dynamics simulations of relatively short filaments by taking the two extreme scenarios into account. We then compared these ‘ideal’ adsorption scenarios with observed images of immobilized vimentin intermediate filaments on different surfaces. We found a good agreement between the contours of the deposited vimentin filaments on mica (‘ideal’ trapping) and on glass (‘ideal’ equilibrated) with our simulations. Based on these data, we have developed a strategy to reliably extract the persistence length of short worm-like chain fragments or network forming filaments with unknown polymer-surface interactions

    Lattice Boltzmann simulations of soft matter systems

    Full text link
    This article concerns numerical simulations of the dynamics of particles immersed in a continuum solvent. As prototypical systems, we consider colloidal dispersions of spherical particles and solutions of uncharged polymers. After a brief explanation of the concept of hydrodynamic interactions, we give a general overview over the various simulation methods that have been developed to cope with the resulting computational problems. We then focus on the approach we have developed, which couples a system of particles to a lattice Boltzmann model representing the solvent degrees of freedom. The standard D3Q19 lattice Boltzmann model is derived and explained in depth, followed by a detailed discussion of complementary methods for the coupling of solvent and solute. Colloidal dispersions are best described in terms of extended particles with appropriate boundary conditions at the surfaces, while particles with internal degrees of freedom are easier to simulate as an arrangement of mass points with frictional coupling to the solvent. In both cases, particular care has been taken to simulate thermal fluctuations in a consistent way. The usefulness of this methodology is illustrated by studies from our own research, where the dynamics of colloidal and polymeric systems has been investigated in both equilibrium and nonequilibrium situations.Comment: Review article, submitted to Advances in Polymer Science. 16 figures, 76 page

    Many-particle Brownian and Langevin Dynamics Simulations with the Brownmove package

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Brownian Dynamics (BD) is a coarse-grained implicit-solvent simulation method that is routinely used to investigate binary protein association dynamics, but due to its efficiency in handling large simulation volumes and particle numbers it is well suited to also describe many-protein scenarios as they often occur in biological cells.</p> <p>Results</p> <p>Here we introduce our "brownmove" simulation package which was designed to handle many-particle problems with varying particle numbers and allows for a very flexible definition of rigid and flexible protein and polymer models. Both a Brownian and a Langevin dynamics (LD) propagation scheme can be used and hydrodynamic interactions are treated efficiently with our recently introduced TEA-HI ansatz [Geyer, Winter, JCP 130 (2009) 114905]. With simulations of constrained polymers and flexible models of spherical proteins we demonstrate that it is crucial to include hydrodynamics when multi-bead models are used in BD or LD simulations. Only then both the translational and the rotational diffusion coefficients and the timescales of the internal dynamics can be reproduced correctly. In the third example project we show how constant density boundary conditions [Geyer et al, JCP 120 (2004) 4573] can be used to set up a non-equilibrium simulation of diffusional transport across an array of fixed obstacles. Finally, we demonstrate how the agglomeration dynamics of multiple particles with attractive patches can be analysed conveniently with the help of a dynamic interaction network.</p> <p>Conclusions</p> <p>Combining BD and LD propagation, fast hydrodynamics, a flexible protein model, and interfaces for "open" simulation settings, our freely available "brownmove" simulation package constitutes a new platform for coarse-grained many-particle simulations of biologically relevant diffusion and transport processes.</p

    Interaction of cylindrical polymer brushes in dilute and semi-dilute solution

    Get PDF
    We present a systematic study of flexible cylindrical brush-shaped macromolecules in a good solvent by small-angle neutron scattering (SANS), static light scattering (SLS), and by dynamic light scattering (DLS) in dilute and semi-dilute solution. The SLS and SANS data extrapolated to infinite dilution lead to the shape of the polymer that can be modeled in terms of a worm-like chain with a contour length of 380 nm and a persistence length of 17.5 nm. SANS data taken at higher polymer concentration were evaluated by using the polymer reference interaction site model (PRISM). We find that the persistence length reduce from 17.5 nm at infinite dilution to 5.3 nm at the highest concentration (volume fraction 0.038). This is comparable with the decrease of the persistence length in semi-dilute concentration predicted theoretically for polyelectrolytes. This finding reveals a softening of stiffness of the polymer brushes caused by their mutual interaction

    Diffusion in crowded biological environments: applications of Brownian dynamics

    Get PDF
    Biochemical reactions in living systems occur in complex, heterogeneous media with total concentrations of macromolecules in the range of 50 - 400 mgml. Molecular species occupy a significant fraction of the immersing medium, up to 40% of volume. Such complex and volume-occupied environments are generally termed 'crowded' and/or 'confined'. In crowded conditions non-specific interactions between macromolecules may hinder diffusion - a major process determining metabolism, transport, and signaling. Also, the crowded media can alter, both qualitatively and quantitatively, the reactions in vivo in comparison with their in vitro counterparts. This review focuses on recent developments in particle-based Brownian dynamics algorithms, their applications to model diffusive transport in crowded systems, and their abilities to reproduce and predict the behavior of macromolecules under in vivo conditions
    corecore