740 research outputs found
Enhancing narrowband high order harmonic generation by Fano resonances
Resonances in the photo-absorption spectrum of the generating medium can
modify the spectrum of high order harmonics. In particular, window-type Fano
resonances can reduce photo-absorption within a narrow spectral region and,
consequently, lead to an enhanced emission of high-order harmonics in
absorption-limited generation conditions. For high harmonic generation in argon
it is shown that the 3s3p6 np 1P1 window resonances (n=4,5,6) give rise to
enhanced photon yield. In particular, the 3s3p6 4p 1P1 resonance at 26.6 eV
allows a relative enhancement up to a factor of 30 compared to the
characteristic photon emission of the neighboring harmonic order. This
enhanced, spectrally isolated and coherent photon emission line has a relative
energy bandwidth of only {\Delta}E/E=3*10-3. Therefore, it might be directly
applied for precision spectroscopy or coherent diffractive imaging without the
need of additional spectral filtering. The presented mechanism can be employed
for tailoring and controlling the high harmonic emission of manifold target
materials
High photon flux table-top coherent extreme ultraviolet source
High harmonic generation (HHG) enables extreme ultraviolet radiation with
table-top setups. Its exceptional properties, such as coherence and
(sub)-femtosecond pulse durations, have led to a diversity of applications.
Some of these require a high photon flux and megahertz repetition rates, e.g.
to avoid space charge effects in photoelectron spectroscopy. To date this has
only been achieved with enhancement cavities. Here, we establish a novel route
towards powerful HHG sources. By achieving phase-matched HHG of a megahertz
fibre laser we generate a broad plateau (25 eV - 40 eV) of strong harmonics,
each containing more than photons/s, which constitutes an increase by
more than one order of magnitude in that wavelength range. The strongest
harmonic (H25, 30 eV) has an average power of 143 W (
photons/s). This concept will greatly advance and facilitate applications in
photoelectron or coincidence spectroscopy, coherent diffractive imaging or
(multidimensional) surface science
Table-Top Milliwatt-Class Extreme Ultraviolet High Harmonic Light Source
Extreme ultraviolet (XUV) lasers are essential for the investigation of
fundamental physics. Especially high repetition rate, high photon flux sources
are of major interest for reducing acquisition times and improving signal to
noise ratios in a plethora of applications. Here, an XUV source based on
cascaded frequency conversion is presented, which delivers due to the drastic
better single atom response for short wavelength drivers, an average output
power of (832 +- 204) {\mu}W at 21.7 eV. This is the highest average power
produced by any HHG source in this spectral range surpassing precious
demonstrations by more than a factor of four. Furthermore, a narrow-band
harmonic at 26.6 eV with a relative energy bandwidth of only {\Delta}E/E= 1.8 x
10E-3 has been generated, which is of high interest for high precision
spectroscopy experiments.Comment: 4 Pages, 4 Picture
Nanofiber Fabry-Perot microresonator for non-linear optics and cavity quantum electrodynamics
We experimentally realize a Fabry-Perot-type optical microresonator near the
cesium D2 line wavelength based on a tapered optical fiber, equipped with two
fiber Bragg gratings which enclose a sub-wavelength diameter waist. Owing to
the very low taper losses, the finesse of the resonator reaches F = 86 while
the on-resonance transmission is T = 11 %. The characteristics of our resonator
fulfill the requirements of non-linear optics and cavity quantum
electrodynamics in the strong coupling regime. In combination with its
demonstrated ease of use and its advantageous mode geometry, it thus opens a
realm of applications.Comment: 4 pages, 3 figure
Bending insensitivity of fiber Bragg gratings in suspended-core optical fibers
This Letter presents simulation and experimental results that explore bending insensitivity of fiber Bragg gratings in suspended-core optical fibers. The implementation of thin silica bridge in the fibers enhances index contrast of the fiber core and reduces bending-induced strain transfer to the fiber core. This fiber design lead to a reduction of over 7 times in strain-induced fiber Bragg grating resonant peak shifts in the suspended-core fiber compared with that in standard telecommunication fiber, and an 0:14dB bending loss at a bending radius of 6:35mm. © 2011 Optical Society of America
Suspended-core fiber Bragg grating sensor for directional- dependenttransverse stress monitoring
This Letter presents simulation and experimental results of orientation-dependent transverse stress fiber sensors using fiber Bragg gratings (FBGs) inscribed in four-hole suspended-core fibers. Resonant peak shifts and splitting of FBGs were studied as functions of the applied transverse load and fiber orientation. Both simulation and experimental results revealed that the response of FBGs in suspended-core fibers is sensitive to both the orientation and magnitude of an applied transverse stress. © 2011 Optical Society of America
High-repetition-rate and high-photon-flux 70 eV high-harmonic source for coincidence ion imaging of gas-phase molecules
Unraveling and controlling chemical dynamics requires techniques to image
structural changes of molecules with femtosecond temporal and picometer spatial
resolution. Ultrashort-pulse x-ray free-electron lasers have significantly
advanced the field by enabling advanced pump-probe schemes. There is an
increasing interest in using table-top photon sources enabled by high-harmonic
generation of ultrashort-pulse lasers for such studies. We present a novel
high-harmonic source driven by a 100 kHz fiber laser system, which delivers
10 photons/s in a single 1.3 eV bandwidth harmonic at 68.6 eV. The
combination of record-high photon flux and high repetition rate paves the way
for time-resolved studies of the dissociation dynamics of inner-shell ionized
molecules in a coincidence detection scheme. First coincidence measurements on
CHI are shown and it is outlined how the anticipated advancement of fiber
laser technology and improved sample delivery will, in the next step, allow
pump-probe studies of ultrafast molecular dynamics with table-top XUV-photon
sources. These table-top sources can provide significantly higher repetition
rates than the currently operating free-electron lasers and they offer very
high temporal resolution due to the intrinsically small timing jitter between
pump and probe pulses
High-average-power femtosecond laser at 258 nm
We present an ultrafast fiber laser system delivering 4.6 W average power at 258 nm based on two-stage fourth-harmonic generation in beta barium borate (BBO). The beam quality is close to being diffraction limited with an M2 value of 1.3×1.6. The pulse duration is 150 fs, which, potentially, is compressible down to 40 fs. A plain BBO and a sapphire-BBO compound are compared with respect to the achievable beam quality in the conversion process. This laser is applicable in scientific and industrial fields. Further scaling to higher average power is discussed
High power ultra-short pulse lasers based on fiber driven OPCPA
Ultrashort laser pulses enable fundamental studies on small length and time scales. Additionally, high pulse energies allows the access to new regimes of light matter interaction and the investigation of nanometer scale structures on attosecond time scales by XUV pulses produced via high harmonic generation (HHG). Unfortunately, the XUV photon flux is typically very low. Hence, high power and high repetition rate driving laser sources are required in order to improve the performance of current studies and to open the way for new exiting applications, such as seeding of free electron lasers. Regrettably, conventional (Ti:Sa) laser technology is limited in output power due to the thermo optical effects in the amplifier crystals.
The objective of this thesis is the development of a new power scalable laser concept merging OPCPA technology with state-of-the-art high power fiber lasers. Based on modeling of the optical parametric amplifier, important requirements on the OPCPA pump are found which are adopted in choice and development of the pump laser later. Furthermore, the geometry of the optical parametric amplifier is optimized for ultra-broadband amplification. Gain narrowing and saturation effects are investigated in order to achieve high conversion efficiency. In addition, parasitic nonlinear effects, such as second harmonic generation of signal and idler wave, are studied and configurations are found which effectively avoid these unwanted effects.
Experimentally, pulse durations of 8 fs and a pulse peak power as large as 6 GW are achieved with an optimized ultra-broadband OPCPA system. In addition, this few-cycle OPCPA system delivers an average output power as large as 6.7 W, which represents a record value for few-cycle lasers. Finally, high harmonic generation is demonstrated with this laser system and further scaling potential to higher peak and average powers is discussed
- …
