740 research outputs found

    Enhancing narrowband high order harmonic generation by Fano resonances

    Full text link
    Resonances in the photo-absorption spectrum of the generating medium can modify the spectrum of high order harmonics. In particular, window-type Fano resonances can reduce photo-absorption within a narrow spectral region and, consequently, lead to an enhanced emission of high-order harmonics in absorption-limited generation conditions. For high harmonic generation in argon it is shown that the 3s3p6 np 1P1 window resonances (n=4,5,6) give rise to enhanced photon yield. In particular, the 3s3p6 4p 1P1 resonance at 26.6 eV allows a relative enhancement up to a factor of 30 compared to the characteristic photon emission of the neighboring harmonic order. This enhanced, spectrally isolated and coherent photon emission line has a relative energy bandwidth of only {\Delta}E/E=3*10-3. Therefore, it might be directly applied for precision spectroscopy or coherent diffractive imaging without the need of additional spectral filtering. The presented mechanism can be employed for tailoring and controlling the high harmonic emission of manifold target materials

    High photon flux table-top coherent extreme ultraviolet source

    Full text link
    High harmonic generation (HHG) enables extreme ultraviolet radiation with table-top setups. Its exceptional properties, such as coherence and (sub)-femtosecond pulse durations, have led to a diversity of applications. Some of these require a high photon flux and megahertz repetition rates, e.g. to avoid space charge effects in photoelectron spectroscopy. To date this has only been achieved with enhancement cavities. Here, we establish a novel route towards powerful HHG sources. By achieving phase-matched HHG of a megahertz fibre laser we generate a broad plateau (25 eV - 40 eV) of strong harmonics, each containing more than 101210^{12} photons/s, which constitutes an increase by more than one order of magnitude in that wavelength range. The strongest harmonic (H25, 30 eV) has an average power of 143 μ\muW (310133\cdot10^{13} photons/s). This concept will greatly advance and facilitate applications in photoelectron or coincidence spectroscopy, coherent diffractive imaging or (multidimensional) surface science

    Table-Top Milliwatt-Class Extreme Ultraviolet High Harmonic Light Source

    Full text link
    Extreme ultraviolet (XUV) lasers are essential for the investigation of fundamental physics. Especially high repetition rate, high photon flux sources are of major interest for reducing acquisition times and improving signal to noise ratios in a plethora of applications. Here, an XUV source based on cascaded frequency conversion is presented, which delivers due to the drastic better single atom response for short wavelength drivers, an average output power of (832 +- 204) {\mu}W at 21.7 eV. This is the highest average power produced by any HHG source in this spectral range surpassing precious demonstrations by more than a factor of four. Furthermore, a narrow-band harmonic at 26.6 eV with a relative energy bandwidth of only {\Delta}E/E= 1.8 x 10E-3 has been generated, which is of high interest for high precision spectroscopy experiments.Comment: 4 Pages, 4 Picture

    Nanofiber Fabry-Perot microresonator for non-linear optics and cavity quantum electrodynamics

    Full text link
    We experimentally realize a Fabry-Perot-type optical microresonator near the cesium D2 line wavelength based on a tapered optical fiber, equipped with two fiber Bragg gratings which enclose a sub-wavelength diameter waist. Owing to the very low taper losses, the finesse of the resonator reaches F = 86 while the on-resonance transmission is T = 11 %. The characteristics of our resonator fulfill the requirements of non-linear optics and cavity quantum electrodynamics in the strong coupling regime. In combination with its demonstrated ease of use and its advantageous mode geometry, it thus opens a realm of applications.Comment: 4 pages, 3 figure

    Bending insensitivity of fiber Bragg gratings in suspended-core optical fibers

    Get PDF
    This Letter presents simulation and experimental results that explore bending insensitivity of fiber Bragg gratings in suspended-core optical fibers. The implementation of thin silica bridge in the fibers enhances index contrast of the fiber core and reduces bending-induced strain transfer to the fiber core. This fiber design lead to a reduction of over 7 times in strain-induced fiber Bragg grating resonant peak shifts in the suspended-core fiber compared with that in standard telecommunication fiber, and an 0:14dB bending loss at a bending radius of 6:35mm. © 2011 Optical Society of America

    Suspended-core fiber Bragg grating sensor for directional- dependenttransverse stress monitoring

    Get PDF
    This Letter presents simulation and experimental results of orientation-dependent transverse stress fiber sensors using fiber Bragg gratings (FBGs) inscribed in four-hole suspended-core fibers. Resonant peak shifts and splitting of FBGs were studied as functions of the applied transverse load and fiber orientation. Both simulation and experimental results revealed that the response of FBGs in suspended-core fibers is sensitive to both the orientation and magnitude of an applied transverse stress. © 2011 Optical Society of America

    High-repetition-rate and high-photon-flux 70 eV high-harmonic source for coincidence ion imaging of gas-phase molecules

    Full text link
    Unraveling and controlling chemical dynamics requires techniques to image structural changes of molecules with femtosecond temporal and picometer spatial resolution. Ultrashort-pulse x-ray free-electron lasers have significantly advanced the field by enabling advanced pump-probe schemes. There is an increasing interest in using table-top photon sources enabled by high-harmonic generation of ultrashort-pulse lasers for such studies. We present a novel high-harmonic source driven by a 100 kHz fiber laser system, which delivers 1011^{11} photons/s in a single 1.3 eV bandwidth harmonic at 68.6 eV. The combination of record-high photon flux and high repetition rate paves the way for time-resolved studies of the dissociation dynamics of inner-shell ionized molecules in a coincidence detection scheme. First coincidence measurements on CH3_3I are shown and it is outlined how the anticipated advancement of fiber laser technology and improved sample delivery will, in the next step, allow pump-probe studies of ultrafast molecular dynamics with table-top XUV-photon sources. These table-top sources can provide significantly higher repetition rates than the currently operating free-electron lasers and they offer very high temporal resolution due to the intrinsically small timing jitter between pump and probe pulses

    High-average-power femtosecond laser at 258  nm

    Get PDF
    We present an ultrafast fiber laser system delivering 4.6 W average power at 258 nm based on two-stage fourth-harmonic generation in beta barium borate (BBO). The beam quality is close to being diffraction limited with an M2 value of 1.3×1.6. The pulse duration is 150 fs, which, potentially, is compressible down to 40 fs. A plain BBO and a sapphire-BBO compound are compared with respect to the achievable beam quality in the conversion process. This laser is applicable in scientific and industrial fields. Further scaling to higher average power is discussed

    High power ultra-short pulse lasers based on fiber driven OPCPA

    Get PDF
    Ultrashort laser pulses enable fundamental studies on small length and time scales. Additionally, high pulse energies allows the access to new regimes of light matter interaction and the investigation of nanometer scale structures on attosecond time scales by XUV pulses produced via high harmonic generation (HHG). Unfortunately, the XUV photon flux is typically very low. Hence, high power and high repetition rate driving laser sources are required in order to improve the performance of current studies and to open the way for new exiting applications, such as seeding of free electron lasers. Regrettably, conventional (Ti:Sa) laser technology is limited in output power due to the thermo optical effects in the amplifier crystals. The objective of this thesis is the development of a new power scalable laser concept merging OPCPA technology with state-of-the-art high power fiber lasers. Based on modeling of the optical parametric amplifier, important requirements on the OPCPA pump are found which are adopted in choice and development of the pump laser later. Furthermore, the geometry of the optical parametric amplifier is optimized for ultra-broadband amplification. Gain narrowing and saturation effects are investigated in order to achieve high conversion efficiency. In addition, parasitic nonlinear effects, such as second harmonic generation of signal and idler wave, are studied and configurations are found which effectively avoid these unwanted effects. Experimentally, pulse durations of 8 fs and a pulse peak power as large as 6 GW are achieved with an optimized ultra-broadband OPCPA system. In addition, this few-cycle OPCPA system delivers an average output power as large as 6.7 W, which represents a record value for few-cycle lasers. Finally, high harmonic generation is demonstrated with this laser system and further scaling potential to higher peak and average powers is discussed
    corecore