35 research outputs found

    Towards ending maternal and infant preventable deaths : omics tools to support vaccine development against Plasmodium falciparum malaria and Streptococcus agalactiae disease

    Get PDF
    The United Nations sustainable developmental goal 3 “good health and well-being” includes the aim to significantly reduce global maternal mortality and preventable deaths of newborns and children under 5 years of age until the year 2030. Two major contributors to global maternal and infant morbidity and mortality are Plasmodium falciparum severe malaria and Group B Streptococcus (GBS) invasive disease. The central aspect in the WHO strategy towards the elimination of these two diseases is the development of effective malaria and GBS vaccines. In the case of malaria, the immunization with radiation-attenuated P. falciparum sporozoites (PfSPZ) has been shown to convey protective immunity against controlled human malaria infection (CHMI), making this a promising vaccination approach. However, the molecular mechanisms underlying protective anti-malarial immune responses as well as the reasons for the poor immunogenicity of the PfSPZ vaccine in malaria-experienced individuals compared to malaria-naïve volunteers, remain poorly understood. Emerging system analysis approaches, including genome-wide accession of gene expression using RNA-Sequencing (RNA-Seq) provide valuable insight into post-vaccination systemic molecular dynamics and can help to identify immunological correlates of protection. In the case of GBS, multivalent glycoconjugate vaccines, targeting selected GBS capsular polysaccharide types, are currently under clinical trial evaluation. With demonstrated good safety and immunogenicity profiles, the licensure of such vaccines is foreseeable. Large-scale monitoring of vaccine recipients for GBS carriage and assessment of vaccine impact on vaginal colonization, potential serotype replacement and emergence of escape strains will be an important aspect of post-licensure epidemiological studies. Matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF MS), has emerged as the method of choice for high-throughput microbial species identification in clinical microbiology and has been suggested for strain level typing of bacteria. The overall aims of this thesis therefore included to (i) evaluate the safety and protective efficacy against CHMI of PfSPZ vaccination in Tanzanian volunteers and (ii) elucidate gene expression dynamics in unvaccinated Tanzanian volunteers following CHMI and (iii) to establish a MALDI-TOF MS typing method for GBS for rapid screening of circulating and emerging genotypes. Building on these objectives, the here presented thesis is structured around five manuscripts

    Subspecies typing of Streptococcus agalactiae based on ribosomal subunit protein mass variation by MALDI-TOF MS

    Get PDF
    Background: A ribosomal subunit protein (rsp)-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) method was developed for fast subspecies-level typing of Streptococcus agalactiae (Group B Streptococcus, GBS), a major cause of neonatal sepsis and meningitis. Methods: A total of 796 GBS whole genome sequences, covering the genetic diversity of the global GBS population, were used to in silico predict molecular mass variability of 28 rsp and to identify unique rsp mass combinations, termed “rsp-profiles”. The in silico established GBS typing scheme was validated by MALDI-TOF MS analysis of GBS isolates at two independent research sites in Europe and South East Asia. Results: We identified in silico 62 rsp-profiles, with the majority (>80%) of the 796 GBS isolates displaying one of the six rsp-profiles 1-6. These dominant rsp-profiles classify GBS strains in high concordance with the core-genome based phylogenetic clustering. Validation of our approach by in-house MALDI-TOF MS analysis of 248 GBS isolates and external analysis of 8 GBS isolates showed that across different laboratories and MALDI-TOF MS platforms, the 28 rsp were detected reliably in the mass spectra, allowing assignment of clinical isolates to rsp-profiles at high sensitivity (99%) and specificity (97%). Our approach distinguishes the major phylogenetic GBS genotypes, identifies hyper-virulent strains, predicts the probable capsular serotype and surface protein variants and distinguishes between GBS genotypes of human and animal origin. Conclusion: We combine the information depth of whole genome sequences with the highly cost efficient, rapid and robust MALDI-TOF MS approach facilitating high-throughput, inter-laboratory, large-scale GBS epidemiological and clinical studies based on pre-defined rsp-profiles

    A simple, rapid typing method for Streptococcus agalactiae based on ribosomal subunit proteins by MALDI-TOF MS

    Get PDF
    Streptococcus agalactiae (Group B Streptococcus, GBS), is a frequent human colonizer and a leading cause of neonatal meningitis as well as an emerging pathogen in non-pregnant adults. GBS possesses a broad animal host spectrum, and recent studies proved atypical GBS genotypes can cause human invasive diseases through animal sources as food-borne zoonotic infections. We applied a MALDI-TOF MS typing method, based on molecular weight variations of predefined 28 ribosomal subunit proteins (rsp) to classify GBS strains of varying serotypes into major phylogenetic lineages. A total of 249 GBS isolates of representative and varying capsular serotypes from patients and animal food sources (fish and pig) collected during 2016-2018 in Hong Kong were analysed. Over 84% (143/171) noninvasive carriage GBS strains from patients were readily typed into 5 globally dominant rsp-profiles. Among GBS strains from food animals, over 90% (57/63) of fish and 13% (2/15) of pig GBS matched with existing rsp-profiles, while the remainder were classified into two novel rsp-profiles and we failed to assign a fish strain into any cluster. MALDI-TOF MS allowed for high-throughput screening and simultaneous detection of novel, so far not well described GBS genotypes. The method shown here is rapid, simple, readily transferable and adapted for use in a diagnostic microbiology laboratory with potential for the surveillance of emerging GBS genotypes with zoonotic potential

    Performance of a real-time PCR approach for diagnosing Schistosoma haematobium infections of different intensity in urine samples from Zanzibar

    Get PDF
    Efforts to control and eliminate schistosomiasis have accelerated over the past decade. As parasite burden, associated morbidity and egg excretion decrease, diagnosis with standard parasitological methods becomes harder. We assessed the robustness and performance of a real-time PCR (qPCR) approach in comparison with urine filtration microscopy and reagent strip testing for the diagnosis of Schistosoma haematobium infections of different intensities.; The robustness of DNA isolation and qPCR was validated in eight laboratories from Europe and Africa. Subsequently, 792 urine samples collected during cross-sectional surveys of the Zanzibar Elimination of Schistosomiasis Transmission (ZEST) project in 2012-2017 were examined with qPCR in 2018. Diagnostic sensitivity of the qPCR was calculated at different infection intensity categories, using urine filtration microscopy as reference test. Spearman's rank correlation between Ct-values and S. haematobium egg counts was assessed and Ct-value percentiles for infection intensity categories determined.; S. haematobium Dra1 DNA-positive samples were identified correctly in all eight laboratories. Examination of urine samples from Zanzibar revealed Dra1 DNA in 26.8% (212/792) by qPCR, S. haematobium eggs in 13.3% (105/792) by urine filtration, and microhaematuria in 13.8% (109/792) by reagent strips. Sensitivity of the qPCR increased with augmenting egg counts: 80.6% (29/36) for counts between 1 and 4 eggs, 83.3% (15/18) for counts between 5 and 9 eggs, 100% (23/23) for counts between 10 and 49 eggs, and 96.4% (27/28) for counts of 50+ eggs. There was a significant negative correlation between Ct-values and egg counts (Spearman's rho = - 0.49, P < 0.001). Seventy-five percent of the Ct-values were ≄ 33 in the egg-negative category, < 31 in the light intensity category, and < 24 in the heavy intensity category.; While the sensitivity of the qPCR was ~ 80% for very light intensity infections (egg counts < 10), in general, the Dra1 based qPCR assay detected twice as many S. haematobium infections compared with classical parasitological tests. The qPCR is hence a sensitive, urine-based approach for S. haematobium diagnosis that can be used for impact assessment of schistosomiasis elimination programmes, individual diagnosis, and in improved format also for verification and certification of elimination.; ISRCTN, ISRCTN48837681 . Registered 05 September 2012 - Retrospectively registered

    Whole blood transcriptome changes following controlled human malaria infection in malaria pre-exposed volunteers correlate with parasite prepatent period

    Get PDF
    Malaria continues to be one of mankind's most devastating diseases despite the many and varied efforts to combat it. Indispensable for malaria elimination and eventual eradication is the development of effective vaccines. Controlled human malaria infection (CHMI) is an invaluable tool for vaccine efficacy assessment and investigation of early immunological and molecular responses against Plasmodium falciparum infection. Here, we investigated gene expression changes following CHMI using RNA-Seq. Peripheral blood samples were collected in Bagamoyo, Tanzania, from ten adults who were injected intradermally (ID) with 2.5x104 aseptic, purified, cryopreserved P. falciparum sporozoites (SanariaÂź PfSPZ Challenge). A total of 2,758 genes were identified as differentially expressed following CHMI. Transcriptional changes were most pronounced on day 5 after inoculation, during the clinically silent liver phase. A secondary analysis, grouping the volunteers according to their prepatent period duration, identified 265 genes whose expression levels were linked to time of blood stage parasitemia detection. Gene modules associated with these 265 genes were linked to regulation of transcription, cell cycle, phosphatidylinositol signaling and erythrocyte development. Our study showed that in malaria pre-exposed volunteers, parasite prepatent period in each individual is linked to magnitude and timing of early gene expression changes after ID CHMI

    Rare variants in axonogenesis genes connect three families with sound-color synesthesia.

    Get PDF
    Synesthesia is a rare nonpathological phenomenon where stimulation of one sense automatically provokes a secondary perception in another. Hypothesized to result from differences in cortical wiring during development, synesthetes show atypical structural and functional neural connectivity, but the underlying molecular mechanisms are unknown. The trait also appears to be more common among people with autism spectrum disorder and savant abilities. Previous linkage studies searching for shared loci of large effect size across multiple families have had limited success. To address the critical lack of candidate genes, we applied whole-exome sequencing to three families with sound-color (auditory-visual) synesthesia affecting multiple relatives across three or more generations. We identified rare genetic variants that fully cosegregate with synesthesia in each family, uncovering 37 genes of interest. Consistent with reports indicating genetic heterogeneity, no variants were shared across families. Gene ontology analyses highlighted six genes-COL4A1, ITGA2, MYO10, ROBO3, SLC9A6, and SLIT2-associated with axonogenesis and expressed during early childhood when synesthetic associations are formed. These results are consistent with neuroimaging-based hypotheses about the role of hyperconnectivity in the etiology of synesthesia and offer a potential entry point into the neurobiology that organizes our sensory experiences

    Models for intensive care training. A European perspective.

    No full text
    The diversity of European culture is reflected in its healthcare training programs. In intensive care medicine (ICM), the differences in national training programs were so marked that it was unlikely that they could produce specialists of equivalent skills. The Competency-Based Training in Intensive Care Medicine in Europe (CoBaTrICE) program was established in 2003 as a Europe-based worldwide collaboration of national training organizations to create core competencies for ICM using consensus methodologies to establish common ground. The group's professional and research ethos created a social identity that facilitated change. The program was easily adaptable to different training structures and incorporated the voice of patients and relatives. The CoBaTrICE program has now been adopted by 15 European countries, with another 12 countries planning to adopt the training program, and is currently available in nine languages, including English. ICM is now recognized as a primary specialty in Spain, Switzerland, and the UK. There are still wide variations in structures and processes of training in ICM across Europe, although there has been agreement on a set of common program standards. The combination of a common "product specification" for an intensivist, combined with persisting variation in the educational context in which competencies are delivered, provides a rich source of research inquiry. Pedagogic research in ICM could usefully focus on the interplay between educational interventions, healthcare systems and delivery, and patient outcomes, such as including whether competency-based program are associated with lower error rates, whether communication skills training is associated with greater patient and family satisfaction, how multisource feedback might best be used to improve reflective learning and teamworking, or whether increasing the proportion of specialists trained in acute care in the hospital at weekends results in better patient outcomes

    Distribution and risk factors for Plasmodium and helminth co-infections: a cross-sectional survey among children in Bagamoyo district, coastal region of Tanzania

    Get PDF
    Plasmodium and soil transmitted helminth infections (STH) are a major public health problem, particularly among children. There are conflicting findings on potential association between these two parasites. This study investigated the Plasmodium and helminth co-infections among children aged 2 months to 9 years living in Bagamoyo district, coastal region of Tanzania.; A community-based cross-sectional survey was conducted among 1033 children. Stool, urine and blood samples were examined using a broad set of quality controlled diagnostic methods for common STH (Ascaris lumbricoides, hookworm, Strongyloides stercoralis, Enterobius vermicularis, Trichuris trichura), schistosoma species and Wuchereria bancrofti. Blood slides and malaria rapid diagnostic tests (mRDTs) were utilized for Plasmodium diagnosis.; Out of 992 children analyzed, the prevalence of Plasmodium infection was 13% (130/992), helminth 28.5% (283/992); 5% (50/992) had co-infection with Plasmodium and helminth. The prevalence rate of Plasmodium, specific STH and co-infections increased significantly with age (p > 0.001), with older children mostly affected except for S. stercoralis monoinfection and co-infections. Spatial variations of co-infection prevalence were observed between and within villages. There was a trend for STH infections to be associated with Plasmodium infection [OR adjusted for age group 1.4, 95% CI (1.0-2.1)], which was more marked for S. stercoralis (OR = 2.2, 95% CI (1.1-4.3). Age and not schooling were risk factors for Plasmodium and STH co-infection.; The findings suggest that STH and Plasmodium infections tend to occur in the same children, with increasing prevalence of co-infection with age. This calls for an integrated approach such as using mass chemotherapy with dual effect (e.g., ivermectin) coupled with improved housing, sanitation and hygiene for the control of both parasitic infections

    Subspecies Typing of Streptococcus agalactiae Based on Ribosomal Subunit Protein Mass Variation by MALDI-TOF MS

    Get PDF
    Background: A ribosomal subunit protein (rsp)-based matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) method was developed for fast subspecies-level typing of Streptococcus agalactiae (Group B Streptococcus, GBS), a major cause of neonatal sepsis and meningitis.Methods: A total of 796 GBS whole genome sequences, covering the genetic diversity of the global GBS population, were used to in silico predict molecular mass variability of 28 rsp and to identify unique rsp mass combinations, termed “rsp-profiles”. The in silico established GBS typing scheme was validated by MALDI-TOF MS analysis of GBS isolates at two independent research sites in Europe and South East Asia.Results: We identified in silico 62 rsp-profiles, with the majority (&gt;80%) of the 796 GBS isolates displaying one of the six rsp-profiles 1–6. These dominant rsp-profiles classify GBS strains in high concordance with the core-genome based phylogenetic clustering. Validation of our approach by in-house MALDI-TOF MS analysis of 248 GBS isolates and external analysis of 8 GBS isolates showed that across different laboratories and MALDI-TOF MS platforms, the 28 rsp were detected reliably in the mass spectra, allowing assignment of clinical isolates to rsp-profiles at high sensitivity (99%) and specificity (97%). Our approach distinguishes the major phylogenetic GBS genotypes, identifies hyper-virulent strains, predicts the probable capsular serotype and surface protein variants and distinguishes between GBS genotypes of human and animal origin.Conclusion: We combine the information depth of whole genome sequences with the highly cost efficient, rapid and robust MALDI-TOF MS approach facilitating high-throughput, inter-laboratory, large-scale GBS epidemiological and clinical studies based on pre-defined rsp-profiles
    corecore