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Abstract

Malaria continues to be one of mankind’s most devastating diseases despite the many and

varied efforts to combat it. Indispensable for malaria elimination and eventual eradication is

the development of effective vaccines. Controlled human malaria infection (CHMI) is an

invaluable tool for vaccine efficacy assessment and investigation of early immunological

and molecular responses against Plasmodium falciparum infection. Here, we investigated

gene expression changes following CHMI using RNA-Seq. Peripheral blood samples were

collected in Bagamoyo, Tanzania, from ten adults who were injected intradermally (ID) with

2.5x104 aseptic, purified, cryopreserved P. falciparum sporozoites (Sanaria® PfSPZ Chal-

lenge). A total of 2,758 genes were identified as differentially expressed following CHMI.

Transcriptional changes were most pronounced on day 5 after inoculation, during the clini-

cally silent liver phase. A secondary analysis, grouping the volunteers according to their pre-

patent period duration, identified 265 genes whose expression levels were linked to time of

blood stage parasitemia detection. Gene modules associated with these 265 genes were

linked to regulation of transcription, cell cycle, phosphatidylinositol signaling and erythrocyte

development. Our study showed that in malaria pre-exposed volunteers, parasite prepatent

period in each individual is linked to magnitude and timing of early gene expression changes

after ID CHMI.
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Introduction

Malaria caused by Plasmodium falciparum continues to be one of mankind’s most devastating

infectious diseases despite the many and varied efforts to combat it. It has been eliminated in

certain areas of the world by combination of treatment with effective drugs, e.g. chloroquine,

and by large scale vector control programs, e.g. through insecticide spraying and insecticide-

treated nets, only to resurge as a result of drug and insecticide resistance. In 2016, there was an

estimated number of 445,000 deaths related to malaria, the overwhelming majority (90%)

occurring in the WHO African Region [1].

An effective malaria vaccine would be a powerful tool for regional elimination and eventual

eradication of malaria. Currently the most advanced malaria vaccine candidate is RTS,S/AS01,

for which large-scale clinical evaluation in African countries has demonstrated vaccine efficacy

against clinical malaria of 34% during the 20 months following dose 1 in children aged 5–17

months [2]. Experimental vaccines comprised of live attenuated P. falciparum sporozoites

have gained increased attention because they are highly effective in providing sterile immu-

nity, i.e. immunity to infection [3–13]. Such vaccines primarily targeting the pre-erythrocytic

stage are safe because development of the parasite is arrested before, during or shortly after the

liver stage, hence prior to the blood stage during which malaria disease symptoms occur. Sev-

eral approaches aiming to determine the optimal design and administration mode of such a

vaccine are being pursued. Promising results have been obtained in studies using radiation-

attenuated sporozoites that were administered by either direct intravenous inoculation [3,5–8]

or mosquito bite [12,13], genetically attenuated sporozoites [10,11], or inoculation of volun-

teers with fully infectious sporozoites under coverage with an anti-malarial drug [4,9]. Besides

their application as potential anti-malaria vaccine candidates, aseptic, purified, cryopreserved,

whole infectious sporozoites are useful in controlled human malaria infection (CHMI) studies.

Targeted infection of volunteers in a controlled environment enables the clear and efficient

assessment of vaccine efficacy [14–16], aids the development of anti-malarial drugs [17], and is

useful for studying human immune responses to malaria infection [18]. The latter is of particu-

lar importance given that we still lack a detailed understanding of the host responses to early

stages of P. falciparum infection.

To overcome aforementioned gaps, high-throughput transcriptome analyses employing

microarray and/or RNA-Seq can be valuable. Both technologies have already been used for

gene expression profiling of malaria-naïve subjects undergoing anti-malaria vaccination and/

or CHMI [19–24], malaria pre-exposed subjects undergoing natural P. falciparum infection

[21,22,25] and the Plasmodium parasite itself [25,26]. Collectively, such studies contribute to a

more comprehensive understanding of molecular patterns and cell signatures involved in the

interaction of the human host with malaria.

Here, we aimed to investigate human transcriptional dynamics during P. falciparum liver

and early asexual blood stage with data from a CHMI study conducted in Bagamoyo, Tanzania

in 2014, as described by Shekalage et al. [27]. We investigated the transcriptional responses by

RNA-Seq analysis of whole blood from 10 adults from malaria endemic regions following

CHMI by intradermal inoculation of PfSPZ Challenge, the first such CHMI ever carried out in

malaria pre-exposed adults. Our results add insights into gene pathways and associated molec-

ular functions elicited by the P. falciparum parasite in malaria-experienced subjects as well as

important findings regarding the interplay between differential expression magnitude and

malaria asexual parasite prepatent period at an individual level.
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Results

DE genes shared among subjects after CHMI

Limma linear modeling was applied to normalized and voom transformed sequence count

data to assess temporal gene expression level changes in response to infection with sporozoites.

Pairwise comparison of samples collected at baseline, day 5, day 9 and day 28 post CHMI,

allowed us to assess the direction and extent of expression changes at the different study visits

(Fig 1A). Setting the baseline transcriptional level as a comparator, a multitude of genes were

differentially expressed in the blood at day 5 (5/0) and day 28 (28/0) after CHMI. Remarkably,

gene expression levels recorded at day 9 post CHMI (9/0) did not differ significantly from the

baseline levels. However, extended pairwise comparative analyses revealed substantial num-

bers of DE genes on day 9 and day 28 relative to day 5 (9/5 and 28/5) and day 28 relative to day

9 (28/9). Most of the DE genes at day 5 (749) were expressed at lower levels in the blood rela-

tive to baseline with fewer genes (226) expressed at relatively higher levels. The opposite is true

at day 28, when more genes had higher (378) rather than lower levels of expression (88) rela-

tive to baseline. The greatest number of DE genes was observed at comparison 9/5 (1,536

genes up, 421 down). Similarly, albeit to a lesser extent, on day 28, 893 genes had increased

and 128 genes had decreased expression levels relative to day 5 and 209 genes had increased

and 97 had decreased expression levels relative to day 9. Not surprisingly, a significant number

of genes were differentially expressed in multiple comparisons. For example, there was a large

overlap between the DE genes determined for comparisons 5/0 and 9/5 (Fig 1B). Many of the

up-regulated DE genes at 5/0 were down-regulated at 9/5 (Fig 1C) and similarly, the majority

of down-regulated DE genes at 5/0 were up-regulated at 9/5 (Fig 1D). Combined, the six pair-

wise comparisons identified a total of 2,758 unique genes or 16.7% of the total 16,473 genes

contained in the data set that were differentially expressed. A list containing the DE genes and

their direction of change for each tested contrast is provided in the supplementary section of

this manuscript (S1 File).

GSEA detects DE trends across all genes

Gene set enrichment analysis (GSEA) generated a picture of progression of differential expres-

sion over 28 days following CHMI. This analysis incorporated all 16,473 genes in the dataset

and ranked the genes in terms of differential expression. GSEA accounts for subtle fold expres-

sion changes and simultaneous increased and decreased DE genes in a given gene module

[28]. This allowed us to also identify gene dynamics for the 9/0 contrast, despite the absence of

DE genes at> 1.5 fold expression changes for this comparison.

GSEA identified several blood transcriptome modules (BTMs) [29] whose expression levels

were decreased at comparison 5/0 (Fig 2). These were linked to modules for ubiquitination

(M138), transcription factors (M213), and inositol phosphate pathways (M101, M129) as well

as cell cycle and intracellular transport (M143, M144, M147, M230, M237). Among BTMs that

appeared up-regulated for contrast 5/0 were modules linked to the CORO1A-DEF6 network

(M32.2, M32.4), platelet activation (M32.0, M32.1), regulation of localization (M63), signaling

events (M100, M215) as well as processes in translation (M245) and transcription (M32.3,

M234).

Interestingly, DE modules identified for contrasts 9/5 and 28/5 had a largely reciprocal pat-

tern of expression compared to contrast 5/0. Two BTMs with decreased relative expression at

contrast 9/5 that were not detected as DE at contrast 5/0 were associated with blood coagula-

tion (M11.1) and cytoskeletal remodeling (M32.8). The latter BTM was also down-regulated at

contrast 28/5. BTMs with no significant change at contrast 5/0 that appeared increased at both
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contrasts 9/5 and 28/5 were linked to the proteasome (M226) and mitosis transcription factors

(M169).

Amongst other BTMs with higher expression levels at contrast 28/5 were modules linked to

erythrocyte differentiation and heme biosynthesis (M173, M171, M222). A similar trend in

increased expression of red blood cell (RBC) related BTMs was observed for contrasts 9/0, 28/

9 and 28/0 as well. Similarly, modules linked to the mitochondrial electron transport chain

(M216, M219, M231, M238) and translation and transcriptional processes (M234, M245) were

up-regulated with increasing magnitude at contrasts 9/0, 28/9 and 28/0.

Despite not having detected any DE genes for the 9/0 contrast in the first round of our anal-

ysis, GSEA revealed a variety of BTMs being differentially expressed at day 9 relative to base-

line. In addition to the aforementioned DE modules at contrast 9/0, BTMs linked to

ubiquitination (M138), cell cycle (M144), mitosis (M169) and most pronounced, to the protea-

some (M226) were identified as up-regulated compared to baseline. The down-regulated mod-

ules at 9/0 comparison largely corresponded to the negatively enriched BTMs of the 9/5 and

28/5 comparisons, with the exception of one module linked to cell junction (M4.13). Lastly,

contrast 28/9 showed, with exception to the already mentioned modules, DE patterns similar

to contrast 5/0. BTMs linked to blood coagulation, cytoskeletal remodeling and cell junction

were found to be positively enriched exclusively for the 28/9 contrast.

Fig 1. DE genes determined by limma pairwise visit comparison. DE was pronounced at a BH-adjusted p-value< 0.05 and>1.5 fold expression change. (a) DE genes

(red: up-regulated genes, blue: down-regulated genes) identified for each tested contrast are visualized as bars. The number of DE genes per contrast is indicated and

additionally emphasized by the length of the bars. The bar width / x-axis indicates the log2 fold expression change of each DE gene. The Venn diagrams display the

overlaps between (b) all DE genes of contrasts 5/0 and 9/5, (c) the 5/0 up-regulated and 9/5 down-regulated DE genes and (d) the 5/0 down-regulated and 9/5 up-

regulated DE genes.

https://doi.org/10.1371/journal.pone.0199392.g001
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As a supporting analysis, we repeated the competitive GSEA, using gene sets designed by

Chaussabel et al. [30] that incorporate larger numbers of genes per set when compared to the

BTMs (S1 Fig). As an additional ancillary analysis, we applied hypergeometric gene set testing,

testing for overlaps between the DE genes and BTMs or Chaussabel defined sets (S2 and S3

Figs). For both analyses the identified sets were largely congruent with our initial results using

GSEA and BTMs. Additional Chaussabel sets detected were linked to the myeloid lineage and

monocyte development (down-regulated at 9/5). In addition, gene sets linked to CD4 cell divi-

sion and cell cycle (up-regulated at 9/5) and NK cell development and cytotoxicity (down-reg-

ulated 5/0) were seen.

DE gene dynamics and linkage to blood stage parasitemia

Examining the expression dynamics of the 2,758 DE genes determined in the first part of the

study, it became evident that the expression patterns varied not only between different visits

but also greatly between volunteers. These expression dynamics are visualized as heatmap in

Fig 2. GSEA using camera (limma), visualized as heatmap. Statistical significance is pronounced at a p-value and FDR< 0.05. Red: up-regulated, blue: down-

regulated.

https://doi.org/10.1371/journal.pone.0199392.g002
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Fig 3, alongside a dendrogram grouping the DE genes in two major clusters. Ordering the

heatmap columns based on increasing individual prepatent period, indicated that the majority

of DE genes located in the larger cluster seemed to follow a distinct pattern regarding magni-

tude and direction of expression changes. Primarily at day 5, subjects with a short prepatent

period displayed an overall stronger down-regulation of DE genes than subjects with a moder-

ate or long prepatent period. The pronounced down-regulation of genes from the larger cluster

at day 28 in one of the subjects was most likely a technical artifact (RIN score of 5.2). This

might be a quality issue but nevertheless did not affect the statistical analyses conducted here.

We performed both limma linear modeling and competitive GSEA on a reduced set of sam-

ples, removing all four samples of two volunteers with the low RIN score samples. Not surpris-

ingly, the number of DE genes determined for the different contrasts were slightly changed,

with the ratio between up- and down-regulated DE genes remaining stable. Importantly, this

did not influence the GSEA outcome, with identical gene sets being identified as before when

analyzing the complete sample set.

Next, we grouped all subjects according to early (9, 9.5, 10), average (11, 11, 11, 11, 11.5, 12)

and late (16 days) appearance of blood stage parasitemia measured by qPCR (S4 Fig). Using

limma, we performed an F-test to test for differences in temporal expression changes across

the three groups. This analysis identified a group of 265 genes linked to parasitemia (S2 File).

Hypergeometric testing revealed significant overlaps of the 265 DE genes with BTMs linked

to regulation of transcription factors (M179, M213), phosphatidylinositol signaling (M101),

Fig 3. Gene expression patterns in relation to time to detection of blood stage parasitemia. The heatmap displays expression levels of 2,758 DE genes (rows), as

determined by limma pairwise comparison of all visits. Subjects (columns) are ordered by increasing pre-patent periods of blood stage parasitemia. Log2 transformed

raw counts were centered gene-wise by subtracting the corresponding mean expression values. For visualization purposes, the expression values were limited to 2 and -2.

The dendrogram indicates hierarchical clustering of the DE genes based on the Ward method. Two major clusters among the DE genes were identified.

https://doi.org/10.1371/journal.pone.0199392.g003
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cell cycle (M144), intracellular transport (M147), ubiquitination (M138) as well as Chaussabel

gene sets linked to erythrocyte development (M2.3) and inflammatory processes (M138) (S2

File). Among these BTMs and Chaussabel gene sets, the magnitude of DE gene change was

most strongly affected by time to blood stage parasitemia for the 5/0 comparison (Figs 4 and

5). The three subjects (early group) that were within a time window of 4–5 days between day 5

blood collection and parasite detection displayed the strongest down-regulation of genes.

Time window differences of 6–7 days (average group; six subjects) or 11 days (one late subject)

between day 5 and blood stage parasitemia detection, respectively, correlated with reduced

changes to gene expression. Similarly, many genes of the erythrocyte development (M2.3) set

displayed increased expression levels in two of the three early subjects already at day 5. By day

9, all other subjects displayed uniform up-regulation of these genes, with the late subject show-

ing the least dynamics.

We assumed that the early and average groups with more robust sample sizes of 3 and 6 vol-

unteers were the main drivers for the here reported results and that the late group with only 1

volunteer had only a weak effect in the statistical model. In order to confirm this, we repeated

the limma linear modeling without the late parasitemia subject, comparing only early vs. aver-

age subjects. This analysis produced similar results as before, showing an even higher overall

number of DE genes (365). Subsequent hypergeometric testing produced the same significant

DE gene sets linked to parasitemia. Taken together, this confirms our reported results are not

driven by the single late subject but by comparison of the early and average volunteers.

Gene expression changes in relation to leukocyte population frequencies

In order to rule out that the observed transcriptional dynamics were driven by proportional

changes in major cell populations, we also integrated hematology data generated by Shekalage

et al. [27] into our analysis. We could indeed observe changes of the leukocyte populations in

our study population. This is in line with a recent study by Wolfswinkel et al. that reports

changes in total and differential leukocyte counts during the clinically silent liver phase in a

controlled human malaria infection in malaria-naïve Dutch volunteers [31]. In our study, a

statistically significant increase of lymphocytes, neutrophils and monocytes was observed dur-

ing the early liver phase of the infection at day 5 (S5 Fig). The increase of neutrophils was even

more pronounced at day of parasitemia (e.g. time point of first positive microscopy thick

smear). In contrast, lymphocytes numbers were reduced at day of parasitemia. We integrated

these WBC dynamics with our limma linear model, investigating whether the magnitude of

increase in the leukocyte populations at day 5 correlated with the magnitude of gene expres-

sion changes at the same time point. We found no statistical evidence linking the magnitude of

cell change to the individual magnitude of gene expression change. WBC changes may cer-

tainly influence gene expression patterns but were not the driving force for the subject to sub-

ject differences in transcriptional dynamics reported in this study.

Discussion

We report here for the first time whole blood transcriptome changes over 28 days following

intradermal CHMI with aseptic, purified, cryopreserved, infectious PfSPZ in malaria-experi-

enced subjects. Transcriptional changes of hundreds of genes that had increased or decreased

relative to their expression levels between days 0 (day of infection), 5, 9 and 28 were identified.

Unlike comparable studies that investigated transcriptional responses following vaccination

and/or mosquito bite challenge [19–23] this study examined subjects who were infected by

intradermal injection with malaria parasites. It also focused on malaria experienced Tanzanian

adults who over the course of their life had been repeatedly exposed to Plasmodium parasites.

Human transcriptional changes following CHMI

PLOS ONE | https://doi.org/10.1371/journal.pone.0199392 June 19, 2018 7 / 18

https://doi.org/10.1371/journal.pone.0199392


Human transcriptional changes following CHMI

PLOS ONE | https://doi.org/10.1371/journal.pone.0199392 June 19, 2018 8 / 18

https://doi.org/10.1371/journal.pone.0199392


Fig 4. Volunteer gene expression trends visualized as boxplots. Gene expression trends are shown for two differentially

expressed BTMs and one gene set linked to parasitemia. Boxplots with gene-wise baseline-subtracted expression values

are shown separately for subjects with early (red), average (green) and late (blue) detection of blood stage parasitemia.

https://doi.org/10.1371/journal.pone.0199392.g004

Fig 5. Volunteer gene expression trends visualized as heatmaps. Gene expression trends are shown for two

differentially expressed BTMs and one gene set linked to parasitemia. Gene-wise expression levels of the Fig 4 DE

modules are visualized as heatmap. Column color bars indicate grouping of subjects into early (red), average (green)

and late (blue) group, based on time point of parasitemia detection. Each row corresponds to one gene.

https://doi.org/10.1371/journal.pone.0199392.g005
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It has been shown that such individuals’ immunological responses to CHMI are different from

those of malaria-naïve subjects. In Tanzanians, a stronger humoral immune response was

recalled after CHMI when compared to Dutch volunteers undergoing identical challenge con-

ditions [32]. Naturally acquired immunity in Kenyans strongly impacts on parasite multiplica-

tion rate observed after CHMI, calling for qPCR based molecular monitoring tools in addition

to blood slide microscopy for parasite detection [33].

Our study aimed to provide comprehensive insights into early host transcriptional

responses occurring during the pre-erythrocytic developmental stage. Since this stage is clini-

cally silent, it is only possible to be studied during a CHMI with parasite strain and infectious

doses defined. Therefore, we collected whole blood samples at days 0, 5 and 9 after intradermal

CHMI covering this under-researched, early infection period.

A surprising finding of our study was the modest transcriptional changes recorded at day 9

relative to baseline. Although several DE gene sets were later identified by GSEA for this con-

trast (Fig 2), the absolute expression level changes on gene level remained all below the DEG

threshold (1.5 fold change) and were therefore not picked up by the initial limma pairwise

analysis. This was unexpected since day 9 is the time point when parasite transition from the

liver to the blood occurs in the first volunteers. This finding supports the hypothesis that the

timing of whole blood collection as well as the inclusion of early time points (before day 9)

during the clinically silent liver stage needs to be targeted in order to optimally capture tran-

scriptional signals. Also noteworthy are the 400 DE genes identified at day 28 post CHMI rela-

tive to baseline (Fig 1A). These changes in expression levels cannot be attributed to the effect

of CHMI only. We assume that these changes are the combined result of infection and treat-

ment resulting in parasite clearance and development of cellular immune responses.

Importantly, our studies show that significant changes in transcriptional patterns are

already observed on day 5—a time point before parasites reach the blood. This is the time

period during which an unknown proportion of the injected PfSPZ have infected liver cells

and are rapidly developing into thousands of merozoites. High variation (ranging from day 9

to day 16) of parasite prepatent period measured by qPCR strongly indicates that the load of

parasites egressing from the liver varied between individuals. Ultimately, this first wave of

malaria parasites determines how rapidly asexual blood stage parasites amass to cross micros-

copy detection threshold (ranging from day 11.5 to day 19) resulting in anti-malaria treatment

[34]. The time between malaria infection and microscopic detection, e.g. the prepatent period,

has been shown to be associated with degree of malaria pre-exposure. Volunteers in the Tanza-

nian CHMI-ID trial, including the 10 subjects analyzed in our study, displayed significantly

longer prepatent periods than malaria-naïve Dutch volunteers who underwent a similar

CHMI study [32]. Pre-existing immunity in the Tanzanian cohort was evident, with more

than 50% of the Tanzanian volunteers having a positive P. falciparum lysate serology at base-

line. Similarly, antibody titers for the P. falciparum antigens CSP, LSA-1, EXP-1, and AMA-1

or preexisting P. falciparum-specific IFN-γ responses were reported. Importantly, none of

these markers for level of pre-existing immunity was associated with the observed differences

in prepatency, suggesting that other immunological parameters need to be assessed as well

[32].

Based on the prepatent period, we segregated our volunteers into three groups, namely

early (n = 3), average (n = 6) and late (n = 1). Interestingly, the length of the prepatent period

is reflected by the extent of observed transcriptional changes in peripheral blood. From the

time point of infection across all time points, we identified a total of 265 DE genes (S2 File)

whose expression level dynamics correlated statistically with time to parasitemia. The majority

of these genes were DE around day 5 (overlap with contrast 5/0 DE genes of 88 and 190 with
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DE genes of contrast 9/5). This was expected since a majority of DE genes and associated

BTMs were identified already by the pairwise visit comparisons for the day 5 contrasts.

Notably, our observation of early gene expression changes is in line with a recent study by

Kazmin et al. who reported DE genes in response to mosquito bite challenge as early as day 1

and day 5 after infection [20]. Among differentially expressed gene modules correlating with

time to asexual blood stage parasitemia detection at contrast 5/0 were two BTMs linked to reg-

ulation of transcription and phosphatidylinositol signaling (Figs 4 and 5, S2 File). Genes con-

tained in these modules displayed in unison stronger down-regulation in volunteers with early

to average time to blood stage parasitemia. The trends observed in these BTMs are representa-

tive of patterns seen in several other modules such as M5.1 (inflammation), M138 (enriched

for ubiquitination), M144 (cell cycle, ATP binding) and M147 (intracellular transport) and

M179 (enriched for TF motif PAX3). A similar, although reciprocal pattern was observed for

genes belonging to gene set M2.3, linked to erythrocyte development (Figs 4 and 5, bottom

panel). Genes of this set displayed increased expression levels in two of the three early subjects

already at day 5. By day 9, all other subjects displayed uniform up-regulation of these genes,

with the late subject showing the least dynamics.

Combined, our observations of individual´s prepatent period interlinked to the magnitude

of differential expression on day 5 strongly suggest that blood collection timing is critical and

should be conducted at more frequent intervals, additionally covering early time points

between days 1 to 4 post CHMI. Capturing time points with the highest transcriptional expres-

sion changes might depend on the size of the parasite load multiplying in the liver. Similar

studies involving malaria naïve volunteers without pre-existing immunity and with more uni-

form prepatent periods would shed more light on this hypothesis.

Some of the BTMs identified here as DE have been reported in similar studies that investi-

gated transcriptional responses following controlled infection with P. falciparum or vaccina-

tion. We can only draw limited conclusions when comparing our results with these studies,

given the differences in study participants (malaria-naïve or vaccinated vs. pre-exposed sub-

jects), challenge model (mosquito bite vs. intradermal injection) and time point of gene

expression assessment. However, there are some interesting parallels to our results: The up-

regulation of genes in the proteasome module observed strongest at day 9 and significant at

day 28 post CHMI has been reported in response to candidate malaria vaccines TRAP and

RTS,S [19,23]. The proteasome is known to play a key function in MHC protein processing

and antigen presentation [23], the genes in this module could therefore be of special interest

regarding the development of adaptive immune responses against P. falciparum. The study by

Dunachie et al. [19] further reported the antigen processing and presentation pathway and

phosphotidylinositol signaling system to be key modules invoked by antigen stimulation after

vaccination and the latter to be correlated with time to parasitemia in subsequent challenge by

mosquito bite [19]. Interestingly, in our case of intradermal PfSPZ CHMI, we found this path-

way to be negatively correlated at day 5. The up-regulation of genes in the MAPK RAS signal-

ing module is an interesting parallel to a finding of Ockenhouse et al., who reported activation

of MAP kinases by natural acquired P. falciparum infection. The same study reported over

expression of genes linked to the GO term “protein ubiquitination”following mosquito bite

challenge of malaria-naïve subjects. This is an interesting parallel to our BTM linked to ubiqui-

tination that was found up-regulated at 9/0 and down-regulated at 5/0 [21]. Cell cycle related

modules have been reported to be affected after RTS,S vaccination and homologous challenge.

Interestingly, the same study reported enrichment of genes in NK and monocyte pathways fol-

lowing vaccination and homologous challenge [20].

Studies in malaria mouse models have revealed that liver stage infection results in accumu-

lation of NKT and NK cells in liver tissue and that these cell subsets are involved in parasite
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protective immune responses [35]. In gene modules defined by the hypergeometric overlap

testing, we found that two gene modules (M7.2 and S1) associated with NK cell biology are

down-regulated on day 5. These data could indicate that in humans NK cell subsets are

recruited from peripheral blood into the liver during the pre-erythrocytic stage infection (S2

Fig).

It should be noted, that the classification of gene and/or module expression change in up-

or down-regulated as reported in our study, might not always be the best way of describing the

underlying biological or cellular dynamics. By using peripheral blood as starting material for

mRNA extraction, abundance or absence of certain transcripts could either reflect general

down-regulation of genes within cells or extravasation and recruitment of cells expressing the

respective transcripts to other body compartments. For the sake of interpretation it might

therefore be sensible to evaluate a module as changed/unchanged rather than focusing on

direction of change.

We acknowledge limitations to our study: First, we did not analyze transcriptional dynam-

ics in control subjects uninfected with sporozoites. This could be a minor concern since the

samples collected at day 0 served as individual baseline for each subject. Second, the sample

size of 10 volunteers limits the generalization of our findings. In our ongoing studies with Tan-

zanian volunteers undergoing intravenous vaccination and challenge with P. falciparum sporo-

zoites, we will be able to reconcile our observations in a second, independent cohort of similar

origin from Tanzania. This will include a more frequent sample collection and comparison of

protected vs. non-protected subjects.

Conclusion

This study demonstrates that the wide window of parasite prepatent periods in Tanzanian vol-

unteers, most likely due to different levels of pre-existing immunity or natural resistance, is of

importance in evaluating transcriptional responses to CHMI. We found that magnitude and

timing of early gene expression changes varied greatly among 10 study subjects, coinciding

with the individual’s parasite prepatent period. Since optimal sampling time points for each

individual are difficult to establish beforehand, we suggest including frequent sampling of

blood collections during early stages of infections to capture the short lived transcriptional

dynamics of cell populations circulating in the peripheral blood.

Material and methods

Ethics statement

All volunteers gave written informed consent before screening and being enrolled in the study.

The trial was performed in accordance with Good Clinical Practices, an Investigational New

Drug (IND) application filed with the U.S. Food and Drug Administration (US FDA) (IND

14267), and an Investigational Medical Product Dossier (IMPD) filed with the Tanzanian

Food and Drug Administration (TFDA). The protocol was approved by institutional review

boards (IRBs) of the Ifakara Health Institute (IHI/IRB/No25) and National Institute for Medi-

cal Research Tanzania (NIMR/HQ/R.8a/Vol.IX/1217), and the Ethikkommission beider Basel

(EKBB), Basel, Switzerland (EKBB 319/11). The protocol was also approved by TFDA

(Ref. No. CE.57/180/04A/50), and the trial was registered at ClinicalTrials.gov (registration ID:

NCT01540903, date of registration: 23/02/2012).
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Clinical trial design and sample collection

Details of volunteers enrolled and study procedure are given in Shekalaghe et al., 2014 [27].

The single center, double-blind, randomized, controlled trial was conducted in Bagamoyo,

Tanzania between February and August 2012. Briefly, 30 healthy male volunteers 20 to 35

years of age were recruited from institutions of higher learning in Dar es Salaam. Screening for

eligibility took place at the Clinical Trial Unit of the Ifakara Health Institute in Bagamoyo. Vol-

unteers were screened using predetermined inclusion and exclusion criteria based on clinical

examinations and laboratory tests. Tests included medical history and physical examinations,

standard hematology, biochemistry and test for malaria, human immunodeficiency virus, hep-

atitis B and C, and sickle cell disease. Volunteers were injected intradermally with 10,000

(N = 12) or 25,000 (N = 12) aseptic, purified, cryopreserved P. falciparum sporozoites or nor-

mal saline (N = 6). From day 5 after the controlled human malaria infection (CHMI), thick

blood smears were obtained regularly to detect blood parasitemia. Volunteers who became

microscopy smear positive, were treated with a standard 3-day regimen of arthemether/lume-

fantrine (Coartem). qPCR analysis for sensitive detection of blood stage parasitemia was car-

ried out retrospectively after volunteers had been diagnosed and treated. The CHMI proved to

be safe for all subjects, showing a high infectivity with 11/12 of the low dose and 10/11 of the

high dose subjects developing blood parasitemia [27]. Samples for RNA-Seq were collected

from the 10 subjects of the high dose (25,000 PfSPZ) group who developed blood stage parasi-

temia after CHMI. 2.5 ml whole blood was collected into PAXgene tubes on days 0, 5, 9 and 28

of the study, transported to the Bagamoyo research and training centre (BRTC) laboratory and

stored at -80˚C.

RNA isolation and sequencing

Poly(A)+ RNA was prepared from whole blood in PAXgene Blood RNA tubes that had been

stored at -80˚C. Following the manufacturer’s protocols, RNA was extracted using the PAX-

gene Blood Kit (PreAnalytiX) and quantified by spectrophotometry. A total of 1.2 μg of total

RNA per sample was processed using the GLOBINclear Human kit (Ambion) in order to

remove globin mRNA. The quantity and quality of the RNA was analyzed on a Bioanalyzer

Eukaryote Total RNA Nano chip. The average RNA Integrity Number (RIN) score across all

40 samples was 8. Two samples collected at day 28 post CHMI (6.4 and 5.2) were below the

recommended minimum RIN threshold of 7. RNAs of all samples were submitted for library

preparation and sequencing (Expression Analysis Inc., NC). Sequencing libraries were pre-

pared using the TruSeq Stranded mRNA Library Prep Kit (Illumina), 50 nt paired-end

sequence reads were obtained using an Illumina HiSeq 2000 platform and captured as raw

sequence data (FASTQ files). All samples were assessed for a sufficient total read count and

subsequently passed quality test using FASTQC.

Data processing and statistical analysis

The reads were aligned with STAR [36] against the UCSC hg38 human reference genome and

annotated with RSEM [37] (S6 and S7 Figs), applying the default parameters. Read libraries

were normalized with TMM (edgeR) [38] and transformed with voom (limma) [39,40]. Fol-

lowing common practice [41], a total of 5,530 genes exhibiting low counts (< 0.5 counts per

million) across all libraries were removed, ultimately leaving 16,473 unique genes in the data-

set. For the linear modeling of differential gene expression, we performed three analyses: (1) A

linear model with a moderated Bayesian variance estimator was applied to the comparisons

between time points. The correlation due to repeated measures across time points for the same

subjects was controlled by using subject as a blocking variable in the linear model. The analysis
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used as one group the 10 high dose subjects who developed blood stage parasitemia and identi-

fied the differentially expressed (DE) genes in response to CHMI across time. DE genes were

identified with comparisons between the pairwise time points of interest (day 5 vs. day 0 (5/0),

9/5, 9/0, 28/5, 28/9 and 28/0). (2) A secondary analysis was conducted where time to detected

asexual blood stage parasitemia was added as a categorical variable (early, average, late) along

with an interaction effect (~ parasitemia � day) to the limma linear model. DE genes were iden-

tified with an ANOVA-like comparison of all interaction effects using an F-statistics. The null

hypothesis being that all interaction effects are zero, and thus time of parasitemia does not

have any effect on gene expression changes over time. (3) To determine if leukocyte popula-

tion frequencies had an impact on differential gene expression, we added the cell counts

(reported in S5 Fig) as a continuous covariate along with an interaction effect to the limma lin-

ear model (~ day � cell_count). DE genes were identified as in the parasitemia model with an

ANOVA-like comparison. The linear modeling was carried out separately for each of the 4

investigated cell populations. For all three analyses, a statistical cutoff of the Benjamini-Hoch-

berg (BH) adjusted p-value less than 0.05 and a minimum 1.5 fold change was used to select

DE genes. After the linear modeling, competitive GSEA (camera) [42] was conducted with the

blood transcriptome modules (BTM) established by Li et al. [29]. Gene sets described by

Chaussabel et al. [30] were used in a confirmatory competitive GSEA analysis. Hypergeometric

gene testing (GeneOverlap R package) [43] was performed as an ancillary analysis to support

the camera competitive GSEA findings. Given two sets of gene lists (e.g. DE genes at different

contrasts and BTMs), this package calculates the overlaps between all pairs of lists from the

two sets. Fisher’s exact test is then used to determine the p-value and odds ratio in comparison

to a genomic background (the genome size) A statistical cutoff of the BH adjusted p-value less

than 0.05 was used for selecting significant modules.

Supporting information

S1 File. DE genes determined by limma pairwise visit comparison. logFC: estimate of the

log2-fold-change in gene expression corresponding to the tested contrast; AveExpr: average

log2 gene expression level over all visits; t: moderated t-statistic; P-value: raw p-value; adj. p-

value: adjusted p-value or q value; Trend: direction of gene expression change.

(XLSX)

S2 File. DE genes and gene sets linked to parasitemia. BTMs and gene sets sharing signifi-

cant overlap with 265 DE genes linked to parasite prepatent period, as determined by hyper-

geometric testing. FDR: false discovery rate; F: moderated F-statistics.

(XLSX)

S1 Fig. GSEA incorporating Chaussabel gene sets. Statistical significance is pronounced at a

p-value & FDR< 0.05. Red: up-regulated, blue: down-regulated.

(TIF)

S2 Fig. BTM hypergeometric testing. Blood transcriptome modules (BTM) sharing signifi-

cant overlap with DE genes as determined by hypergeometric overlap testing. Only significant

overlaps (BH adj. p-value < 0.05) are shown.

(TIF)

S3 Fig. Chaussabel hypergeometric testing. DE Chaussabel gene sets determined by hyper-

geometric gene set testing. Statistical significance is pronounced at a p-value & FDR< 0.05.

Each tile is labeled with the overlap size vs. overall module size.

(TIF)
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S4 Fig. Volunteer parasitemia data measured by qPCR. Development of asexual blood para-

sitemia in 10 volunteers as reported 2014 by Shekalaghe et al. [27]. (a) PMR: parasite multipli-

cation rate, determined applying a linear model as described by Douglas et al. [34]. (b)

Development of blood parasitemia visualized as line graph. Colored bars (a) and lines (b) indi-

cate grouping of volunteers into early (red), average (green) and late (blue) for RNA-Seq statis-

tical analysis.

(TIF)

S5 Fig. Changes of leukocyte population frequencies following CHMI. Boxplots are shown

for total leukocytes (a), lymphocytes (b), neutrophils (c) and monocytes (d). Individual volun-

teers are colored according to detection time point of blood stage parasitemia as early (red),

average (green) or late (blue). Bars with asterisk indicate statistically significant changes

between visits as determined by paired t-test (�: p-value< 0.05, ��: p-value < 0.01, ���: p-

value < 0.0001).

(TIF)

S6 Fig. Read mapping information. Read mapping to UCSC hg38 reference genome using

STAR. Illumina sequencing yielded 58.56 to 82.54 million paired-end reads (mean 69.29 mil-

lion). STAR successfully mapped an average of 87.13% (63.4% - 94.1%) reads to the human ref-

erence genome. Among these reads, 13.25% (11.31–17.5%) mapped to multiple loci (light

green), with the remaining reads mapping to unique sequence stretches on the reference

genome (dark green). Unmapped reads were mostly too short (97.47%, salmon) indicating

impaired sequencing quality. A small fraction of unmapped reads (2.0%) were mapped to too

many loci or not mapped to the reference for other reasons (0.53%, red).

(TIF)

S7 Fig. Gene count information. Distribution of log2 gene counts after RSEM read quantifi-

cation. On average, 25.48 million counts were shared across 18,463 (17,513–18,877) gene sym-

bols per sample. Half of these genes exhibit between ~30 to ~1’000 counts. Each 25% of the

genes have counts below ~30 or above ~1’000 (up to 1.8 million counts per gene). Across all

samples, 22,003 unique genes were covered. Samples are ordered by study day of collection

(0,5,9,28) and grouped by subject. Outlier values (> Q3 + 1.5xIQR) are displayed as dots.

(TIF)
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