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Summary

The United Nations sustainable developmental goal 3 “good health and well-being” includes
the aim to significantly reduce global maternal mortality and preventable deaths of newborns
and children under 5 years of age until the year 2030. Two major contributors to global
maternal and infant morbidity and mortality are Plasmodium falciparum severe malaria and
Group B Streptococcus (GBS) invasive disease. The central aspect in the WHO strategy
towards the elimination of these two diseases is the development of effective malaria and
GBS vaccines. In the case of malaria, the immunization with radiation-attenuated P.
falciparum sporozoites (PfSPZ) has been shown to convey protective immunity against
controlled human malaria infection (CHMI), making this a promising vaccination approach.
However, the molecular mechanisms underlying protective anti-malarial immune responses as
well as the reasons for the poor immunogenicity of the PfSPZ vaccine in malaria-experienced
individuals compared to malaria-naive volunteers, remain poorly understood. Emerging
system analysis approaches, including genome-wide accession of gene expression using
RNA-Sequencing (RNA-Seq) provide valuable insight into post-vaccination systemic
molecular dynamics and can help to identify immunological correlates of protection.

In the case of GBS, multivalent glycoconjugate vaccines, targeting selected GBS capsular
polysaccharide types, are currently under clinical trial evaluation. With demonstrated good
safety and immunogenicity profiles, the licensure of such vaccines is foreseeable. Large-scale
monitoring of vaccine recipients for GBS carriage and assessment of vaccine impact on
vaginal colonization, potential serotype replacement and emergence of escape strains will be
an important aspect of post-licensure epidemiological studies. Matrix-assisted laser desorption
time-of-flight mass spectrometry (MALDI-TOF MS), has emerged as the method of choice
for high-throughput microbial species identification in clinical microbiology and has been
suggested for strain-level typing of bacteria.

The overall aims of this thesis therefore included to (i) evaluate the safety and protective
efficacy against CHMI of PfSPZ vaccination in Tanzanian volunteers and (ii) elucidate gene
expression dynamics in unvaccinated Tanzanian volunteers following CHMI and (iii) to
establish a MALDI-TOF MS typing method for GBS for rapid screening of circulating and
emerging genotypes.

Building on these objectives, the here presented thesis is structured around five manuscripts:
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Manuscript 1: Safety, Immunogenicity, and Protective Efficacy against Controlled
Human Malaria Infection of Plasmodium falciparum Sporozoites Vaccine in Tanzanian
Adults

In this study, we used controlled human malaria infection (CHMI) by direct venous
inoculation (DVI) of cryopreserved, infectious Plasmodium falciparum (Pf) sporozoites (SPZ)
to assess for the first time the safety, immunogenicity and protective efficacy of vaccination
by radiation-attenuated PfSPZ in malaria-experienced subjects. In previous studies,
immunization with five doses at 0, 4, 8, 12, and 20 weeks of 2.7 x 10° PfSPZ gave 65%
vaccine efficacy (VE) at 24 weeks against mosquito bite CHMI in U.S. adults and 52% (time
to event) or 29% (proportional) VE over 24 weeks against naturally transmitted Pf in Malian
adults. We assessed two vaccine regimens (5 doses of 1.35 x 10° PfSPZ and 5 doses of 2.7 x
10° PfSPZ) in Tanzanians for VE against CHMI. Twenty- to thirty-year-old men were
randomized to receive five doses normal saline or PfSPZ vaccine in a double-blind trial.
Vaccine efficacy was assessed 3 and 24 weeks later. Adverse events were similar in vaccinees
and controls. Antibody responses to Pf circumsporozoite protein were significantly lower than
in malaria-naive Americans, but significantly higher than in Malians. All 18 saline and
infectivity controls developed Pf parasitemia after CHMI. In the low dose group, one of 20
(5%) vaccines remained uninfected after 3 week CHMI. In the high dose group, four of 20
(20%) vaccinees remained uninfected after 3 week CHMI and all four (100%) were
uninfected after repeat 24 week CHMI. PfSPZ vaccine was safe, well tolerated, and induced
durable VE in four subjects in the higher dose group, indicating PfSPZ dose effect. VE testing
using homologous CHMI by DVI appeared more stringent over 24 weeks than mosquito bite
CHMI in United States or natural exposure in Malian adults, thereby providing a rigorous test

of VE in Africa.

Manuscript 2: Whole blood transcriptome changes following controlled human malaria

infection in malaria pre-exposed volunteers correlate with parasite prepatent period

We investigated global gene expression changes following CHMI using RNA sequencing
(RNA-Seq). Peripheral whole blood samples were collected in Bagamoyo, Tanzania, from ten
adults injected intra-dermally (ID) with 2.5 x 10" aseptic, purified, cryopreserved PfSPZ. At
5, 9 and 28 days following CHMI, a total of 2,758 genes were identified as differentially
expressed. Transcriptional changes were most pronounced on day 5 after inoculation, during

the clinically silent liver phase. A secondary analysis, grouping the volunteers according to
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their asexual blood stage prepatent period duration, identified 265 genes whose expression
levels were linked both positive and negative to time of parasitemia detection measured by
gPCR. Gene modules associated with these 265 genes were linked to regulation of
transcription, cell cycle, phosphatidylinositol signaling and erythrocyte development. Our
study showed that in malaria pre-exposed volunteers, differences in prepatent period —
possibly reflecting the size of the liver to blood inoculum of the parasite — can be linked to

changes observed in the peripheral blood transcriptome.

Manuscript 3: Subspecies typing of Streptococcus agalactiae based on ribosomal subunit

protein mass variation by MALDI-TOF MS

A ribosomal subunit protein (rsp) profiling based on matrix-assisted laser
desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) was developed
for fast sub-species level typing of Streptococcus agalactiae (Group B Streptococcus, GBS), a
major cause of neonatal sepsis and meningitis. A total of 796 GBS whole genome sequences
(WGS), mirroring the genetic diversity of the global GBS population, were used to identify
molecular mass variability of 28 rsp in the molecular weight range 4,425 to 19,293 Da. We
identified 62 unique rsp mass combinations, termed “rsp-profiles” which can be distinguished
by MALDI-TOF MS. The majority (>80%) of these GBS strains were found to display one of
the six defined rsp-profiles 1-6. Importantly, these dominant rsp-profiles classify GBS strains
in high concordance with the core-genome based phylogenetic clustering. Validation of our
approach by MALDI-TOF MS analysis of 248 in-house GBS isolates showed that the 28 rsp
were detected in the mass spectra, allowing fast, robust and reliable assignment of GBS
clinical isolates to rsp-profiles at high sensitivity (99%) and specificity (97%). Our approach
distinguishes the major phylogenic GBS genotypes, identifies hyper-virulent strains, predicts
probable capsular serotype and surface protein variants and distinguishes between GBS
genotypes of human and animal origin. In summary, we propose an elegant method
combining the advantages of the information depth generated by WGS with the highly cost
efficient, rapid and robust MALDI-TOF MS approach facilitating high-throughput, inter-

laboratory, large-scale GBS epidemiological and clinical studies.
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Manuscript 4: Draft Genome Sequences of Seven Streptococcus agalactiae Strains

Isolated from Camelus dromedarius at the Horn of Africa

In this genome announcement, we present draft whole genome sequences of seven
Streptococcus agalactiae strains isolated from Camelus dromedarius in Kenya and Somalia.
These data are an extension to the Group B Streptococcus (GBS) pan-genome and might
provide more insight into the underlying mechanisms of pathogenicity and antibiotic

resistance of camel GBS.

Manuscript 5: Tracing and monitoring of emerging Group B Streptococcus genotypes

with zoonotic potential in Hong Kong

We validated in this study our novel developed MALDI-TOF MS GBS typing method for
analysis of clinical and animal derived GBS collections in Hong Kong. Importantly, we
confirm here the inter-laboratory transferability of our rsp-biomarker based MALDI-TOF MS
typing method and its potential for rapid and cost efficient screening of hundreds of GBS
isolates for the tracing and surveillance of novel, emerging genotypes. We found that 170
GBS strains isolated from adult hospitalized patients and collected from the food markets on
pig and fish specimens in Hong Kong can be readily assigned by MALDI-TOF MS into five
globally dominant rsp-profiles, allowing reliable prediction regarding their genetic backbone
and capsular serotype. Our method is able to discriminate between human GBS genotypes and
to identify unique, potentially emerging GBS lineages circulating in fish and pig with

zoonotic potential.
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Chapter 1

Introduction



1.1 Malaria

1.1.1 Global disease burden

Despite combined efforts, malaria remains one of deadliest infectious diseases worldwide. Six
protozoan parasite species of the Plasmodium genus have been described as cause of malaria
disease in humans. Historically, no other pathogen has probably had a comparable selective
pressure on human evolution than P. falciparum, which is the main cause of malaria severe
disease and deaths [1]. P. vivax is the second most important Plasmodium species, which was
long underestimated but increasingly acknowledged to contribute significantly to severe
malaria [2]. The remaining four Plasmodium species P. ovale curtisi, P. ovale wallikeri, P.
malariae and the simian parasite P. knowlesi, are seldom associated with severe malaria
disease [1]. Although malaria incidence rates have decreased 18% globally between 2010-
2016, an annual total of 216 million malaria cases and 445,000 malaria-related deaths were
still reported in 2016, the majority of which affecting children under the age of five. Most
malaria cases (90%) occurred in the World Health Organization (WHO) African Region, with
99% of these cases attributed to P. falciparum. Similarly, the vast majority (91%) of annual

malaria-related deaths occurred in the WHO African Region [3].

1.1.2  Plasmodium spp. life cycle

Transmission of Plasmodium parasites to the human host occurs via the bite of a female
Anopheles mosquito. During the blood meal, sporozoites, the motile, infectious stage of
Plasmodium, are injected into the human dermis, from where they travel within 30-60
minutes through the skin to the blood vessels and the lymphatic system, and finally to the
liver (Fig. 1) [4]. From there, sporozoites traverse the sinusoidal barrier via endothelial cells
or Kupffer cells [5] and subsequently invade hepatocytes. A crucial factor for this invasion
step is the circumsporozoite protein (CSP), which forms a dense coat on the parasites surface
and mediates cell invasion by binding to heparan sulfate proteoglycans (HSPGs) [1]. After
infection of the liver cells, the parasitophorous vacuole membrane (PVM) builds up and
further transforms (~10 days P. falciparum, ~12 days P. vivax) until the formed merosome
ruptures and up to 40,000 merozoites are released into the blood stream [1,4]. Subsequent

encounter with an erythrocyte and invasion marks the starting point of the asexual blood stage
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cycle. In the following ~48 hours cell division and development of the parasite from ring
stage to trophozoite and schizont occurs, resulting in the release of 16-32 merozoites from
each schizont which individually invade new red blood cells (RBCs). At some point during
the asexual cell division cycle, a proportion of the parasites undergo a developmental switch,
which leads to sexual commitment and the development of parasites via multiple stages into
male and female gametocytes [1]. During the maturation of this parasite stage, the
gametocytes leave the blood circulation to sequester in the bone barrow, in order to avoid
spleenic clearance [6]. Upon re-entry to the bloodstream, gametocytes (stage V) are taken up
by a blood feeding female mosquito again and undergo further differentiation into male
microgametes and female macrogametes in the mosquito midgut. This is followed by the
formation of a zygote, which migrates through the midgut epithelium and forms an oocyst in
the basal lamina, in which the sporogonic cycle occurs. With the final release of sporozoites
from the oocyst and their migration to the mosquito salivary glands, the parasite is ready to be

transferred to the next host during blood meal, thereby closing the life cycle [1].

1.1.3 Malaria clinical symptoms and treatment

First clinical symptoms of a malaria infection occur following the clinically silent liver phase,
around 4-8 days after initial invasion of erythrocytes [4]. Depending on the severity of
symptoms, malaria disease is commonly classified as asymptomatic, uncomplicated or severe
(complicated) [7]. In asymptomatic patients, parasites are circulating in the blood but are not
causing any symptoms. In the case of uncomplicated malaria, symptoms are non-specific
including fever, headache, nausea or vomiting and there is no occurrence of severe organ
dysfunction. Severe malaria, which is predominantly caused by P. falciparum, 1is
accompanied with severe anemia, respiratory distress and coma (cerebral malaria) [4]. The
characteristic fever waves during severe malaria are caused by the synchronized rupture of
thousands of infected RBCs (iRBCs) and subsequent release of merozoites, which triggers an
acute and excessive host inflammatory response [1]. Microvascular obstructions due to
sequestration of mature parasites in the blood vessels does further contribute to the severity of
malaria disease [8]. The WHO recommendations regarding malaria treatment includes
diagnostic confirmation of Plasmodium infection via thick blood smear microscopy or rapid-
diagnostic testing. In the case of uncomplicated malaria, a 3-day treatment with artemisinin-

based combination therapies (ACT) is standard. In the case of severe malaria, intravenous or



intramuscular artesunate for at least 24 hours, followed by a standard 3-day ACT regimen is

recommended [9].
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Figure 1. Plasmodium spp. life cycle. (A) Plasmodium sporozoites are injected into the host dermis during the
blood meal of a female Anopheles mosquito. (B) During the clinically silent pre-erythrocytic infection stage,
parasites migrate in the bloodstream and invade liver cells. (C) Upon release of merozoites into the bloodstream,
the parasites invade erythrocytes to start the asexual blood stage. (D) A proportion of parasites undergo sexual
development into male and female gametocytes (E). After uptake of the gametocytes by the mosquito, the
parasites further transform, ultimately resulting in release of sporozoites to the mosquito salivary gland. Figure

from Cowman et al. [1].

1.1.4 P. falciparum immune evasion and host immune response

1.1.4.1 Parasite evasion strategies and adaption to human host

The P. falciparum parasite poses two major challenges to the human immune system. First, its
complex life cycle in the human host, during which the parasite mostly resides intracellularly
in hepatocytes or RBCs and therefore remains largely protected from direct immune attack

[10] The time intervals during which the merozoite stage is present in the blood stream is



extremely short and further limits the time of action for the immune system. Additionally, the
duration of the liver stage phase is too short for prevention of parasite development in due
time by an effective adaptive immune response [11]. The second challenge is the enormous
genetic variability of the P. falciparum parasite. Extensive antigenic complexity of
polymorphic surface antigens expressed during the different life stages allows the parasite to
evade the human immune system (Fig. 2). [12].

In areas of high transmission, natural immunity against severe malaria has been suggested to
be acquired after few infections already, while clinical immunity to milder forms of malaria
take much longer to develop [13]. Although people living in endemic areas may develop
clinical immunity to mild malaria disease over years of repeated exposure, this immunity is
not sterile. Such people continue to have asymptomatic, low-level parasite malaria episodes

and continue to serve as reservoir for transmission of the parasite [14,15].
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1.1.4.2 Immune response against pre-erythrocytic stage

The early P. falciparum infection stages in skin and liver remain clinically silent, because of a
lack of systemic inflammatory responses, reflecting the generally weak innate immune
mechanisms against natural P. falciparum infection [16]. The immuno-regulatory
environment of the human skin, which includes regulatory T cells (T regs) that are thought to
provide immune tolerance to sporozoites, allows the parasite to avoid complete clearance in
the dermis [17,18]. In the blood stream and lymphatic system, the extent of antibody mediated
opsonization and subsequent phagocytosis of sporozoites is not sufficient to prevent
progression to liver invasion (Fig. 2). CD4" and CD8" T cells, which are primed in skin
draining lymph nodes upon encounter with antigen-presenting dendritic cells, can induce
interferon (INF)-y responses in the liver that prevent merozoite development in infected
hepatocytes. However, these responses are mostly too weak to prevent transition to blood
stage [11]. In striking contrast to lack of pre-erythrocytic immunity in natural infection is the
demonstrated induction of sterile immunity in humans that were injected experimentally with
high numbers of radiation-attenuated sporozoites [19] or low numbers of fully infectious
sporozoites under chloroquine prophylaxis [20]. Such studies demonstrated strong antibody
and T cell responses against various liver stage antigens. Pluripotent effector memory T cells
producing INF-y, tumor necrosis factor (TNF)-o and interleukin (IL)-2 were identified as
potential correlates of protection [20]. Similarly, high levels of interferon-gamma producing
CDS8" T cells targeting infected hepatocytes were found to be crucial for protection [21].
Collectively, such studies continue to contribute to a better understanding of pre-erythrocytic

immunological mechanisms during early stage malaria disease.

1.1.4.3 Immune response against asexual stage

The immunological response against the P. falciparum blood stage parasites is characterized
on the one hand by extensive production of pro-inflammatory cytokines and chemokines
including IL-6, IL-10, IL-12 (p70), INF-y and TNF [22,23]. Besides of CD4" T cells that are
centrally involved in the protective immune response through production of INF-y and
interaction with antibody producing B cells, other T cell subsets including yd T cells and
natural killer T cells (NKT) are acknowledged to be involved in INF-y production (Fig. 2). P.
falciparum pathogen-associated molecular pattern molecules (PAMPs), including hemozoin
[24] and AT-rich DNA motifs [25], which are recognized by pattern recognition receptors

(PRR) on immune cells, are a main trigger for systemic inflammation [16]. While these



extensive inflammatory responses contribute to killing of the parasite, for instance through
natural killer (NK) cells induced INF-y production that promotes destruction of iRBCs by
activated macrophages [26], the excess systemic inflammation can also contribute to severe
clinical symptoms [27].

The second crucial mechanism to cope with blood-stage malaria is antibody-mediated
immunity, through direct opsonization of merozoites, blocking of RBC infection and
preventing of iRBC sequestration (Fig. 2). Many questions regarding which of the manifold
parasite antigens display targets for protective antibodies remain unanswered [16]. As
opposed to other pathogens, antibodies produced against P. falciparum are rapidly lost after
3-9 months, providing no long-term protection [28,29]. It has been suggested that P.
falciparum directly impairs CD4" T helper cell and B cell function. For instance it was shown
that the programmed cell death protein 1 (PD-1), a regulator of T cell exhaustion, is up-
regulated on CD4" T cells in children following P. falciparum infection [30].

1.1.5 Vaccine development against malaria

Vector control measures including the large-scale distribution of insecticide-treated bed nets
and indoor residual spraying have led to a significant decrease of malaria burden in sub-
Saharan Africa [31]. Lately, gene editing technologies like CRISPR-Cas9 promise a new level
of vector control by direct manipulation and alteration of the mosquito population via gene
drive systems [32,33]. Nevertheless, there is a common consensus that in order to move
towards malaria elimination, an effective anti-malaria vaccine is necessary.

There are numerous potential malaria vaccines in the global pipeline (Fig. 3). Either in
translational projects (Phase la, 2a and 1b) or in more advanced clinical evaluation as vaccine
candidates (Phase 2b and 3). The majority of these candidates either target the pre-
erythrocytic or the blood-stage of the Plasmodium parasite. A third, less abundant class of
transmission-blocking vaccine (TBV) candidates aim to prevent development of the malaria
parasite during the sporogonic cycle, e.g. after blood meal ingestion of gametocytes by the
mosquito and therefore provide no direct protection to the vaccinee [34].

The currently most advanced pre-erythrocytic stage malaria vaccine candidate is
RTS,S/AS01, also referred to by its trade name Mosquirix. RTS,S is a recombinant protein
vaccine targeting the P. falciparum CSP, which is the dominant protein expressed on the
parasite surface during the pre-erythrocytic stage. RTS,S co-expresses part of the

circumsporozoite sequence together with fused and free hepatitis B surface antigen and
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formulated with the ASO1 adjuvant as viral like particles. Clinical evaluation in a phase 3 trial
showed that vaccination with RTS,S reduced the number of malaria cases by roughly 36% in
children between 5-7 months at first time of vaccination over a follow-up period of 48
months. In children aged 6-12 weeks at first time of vaccination, the vaccine efficacy was
lower at roughly 26% over a follow-up period of 38 months [35]. Following WHO
recommendation, RTS,S will be introduced 2019 in pilot studies in three African countries to
evaluate its use as a complementary malaria control tool [36]. A broad range of other
recombinant-protein based vaccines, targeting novel surface proteins of the malaria parasite
are in developmental pipelines and novel multi-stage or multi-component formulations for

increased vaccine efficacy are being investigated (reviewed in Draper et al. [37]).

An alternative approach to malaria the subunit-based vaccines is the immunization of human
volunteers with live-attenuated P. falciparum sporozoites. Early studies in the 1970s
demonstrated that inoculation of malaria-naive patients with radiation-attenuated sporozoites
via mosquito bite induces protective immunity against P. falciparum malaria [38,39]. A
significant step marked the implementation of an in-house pipeline, enabling isolation and
cryopreservation of P. falciparum sporozoites (PfSPZ), which allows to move away from
immunization via mosquito bite to direct inoculation of volunteers [40,41]. This cleared the
path not only for a series of clinical PfSPZ vaccine trials but also for the implementation of
mosquito-independent controlled human malaria infection (CHMI), during which volunteers
are injected with fully infectious PfSPZ. CHMI has become an indispensable tool to
investigate anti-malarial drug efficacy [42,43] and importantly to assess protective vaccine
efficacy (VE) in malaria vaccine trials without the need to have large field studies with
sufficiently high malaria transmission. An early radiation-attenuated PfSPZ vaccine study
with subcutaneous immunization of malaria-naive volunteers was found to be safe but did
only induce limited immunogenicity and protection from subsequent homologous CHMI [44]
(NCT01001650). It was later found, that intravenous application of PfSPZ is required to
induce potent immune responses in humans and to induce protection from malaria in malaria-
naive U.S. volunteers [45] (NCT01441167). A recent study conducted in Mali showed that
intravenous PfSPZ immunization leads to partial protection (52% (time to event) or 29%
(proportional) VE over 24 weeks) from naturally acquired malaria disease in malaria-
experienced individuals [46] (NCT01988636). Immune responses in patients from Mali were
found to be weaker compared to immune responses to the same vaccine regiment in malaria-

naive volunteers. This finding was supported by a recent clinical trial conducted on Bioko
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Island in Equatorial Guinea, where PfSPZ vaccine was found to be safe and well-tolerated,
with induced immune responses comparable to what has been observed in the volunteers of
the Mali trial [47] (NCT02418962). The outcome of a phase I clinical PfSPZ vaccine trial
(NCT02132299) conducted in Bagamoyo, Tanzania that investigated the safety, efficacy and
protective efficacy against homologous CHMI, is presented in Chapter 2.

Besides the development and refinement of the radiation-attenuated PfSPZ vaccine method,
two alternative and promising approaches to weaken the parasite prior to immunization have
emerged over the past years. Immunization with fully infectious P. falciparum sporozoites
and simultaneous treatment with chloroquine as anti-malarial chemoprophylaxis (PfSPZ-
CVac), has shown to induce sterile protection in malaria-naive volunteers (NCT02115516)
[48]. A second approach using genetically attenuated parasites (GAP), that had three genes
deleted, rendering the parasite unable to successfully develop in the hepatocyte, indicated a

good safety and immunogenicity profile in human volunteers [49].

TRANSLATIONAL PROJECTS VACCINE CANDIDATES
Phasela | Phase 2a | Phase1b | Phase2b |  Phase3
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Reporting overdue

P. falciparum vaccines: [T Pre-erythrocytic [T Blood-stage [ | Transmission-blocking
P. vivax vaccines: || Pre-erythrocytic | ] Blood-stage [ | Transmission-blocking

Figure 3. WHO global malaria vaccine pipeline.
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1.2 RNA-Seq method for transcriptome analysis

1.2.1 Transcriptomics: definition and history

The transcriptome is defined as the complete set of RNA transcripts present in a single cell or
in a population of cells at a specific time point [50]. Unlike the genome, the transcriptome is a
highly dynamic system, influenced by both environmental and developmental factors. While
most research involving the transcriptome has traditionally focused on the protein encoding
messenger RNA (mRNA), the complexity of the transcriptome is becoming increasingly
evident as novel non-coding RNA (ncRNA) species are continuously discovered. Thought to
be involved in translation, splicing or gene expression regulation at post-transcriptional level,
the most prominent ncRNA species include transfer RNA (tRNA), ribosomal RNA (rRNA),
small nuclear RNA (snRNA), microRNA (miRNA) and long non-coding RNA (IncRNA)
[51]. The key aim of transcriptomics is to index the collective abundance and quantity of
RNA species and to observe their dynamics across changing physiological conditions in order
to understand development and disease [50,51].

Initial low-throughput gene expression methods like northern blots and qPCR only allowed
analysis of single transcripts. With the introduction of high-throughput technologies, genome-
wide interrogation of transcript abundances and quantities became feasible [51]. The first of
these transcriptomic technologies was the hybridization-based microarray method, where
fluorescently labeled complementary DNA (cDNA) are incubated on DNA oligonucleotide
chips [52]. Despite of allowing high-throughput gene expression analysis at relatively low
costs, microarrays have the major limitations that they are dependent on existing knowledge
of the analyzed sequences, display high levels of background noise due to cross-hybridization
of highly similar sequences and cannot quantify changes of gene expression levels with a
good dynamic range [50]. With the recent advance of high-throughput sequence technology, a
new way of investigating the transcriptome has emerged. RNA sequencing (RNA-Seq) is
superior to conventional tools and is revolutionizing the way eukaryotic transcriptomes are

analyzed [50,51].
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1.2.2 RNA-Seq workflow

In the first step of the RNA-Seq workflow (Fig. 4a), total RNA is extracted from the
biological sample of choice and the RNA quality, a crucial prerequisite for all following
analyses, assessed via the RNA integrity number (RIN). The RNA isolation is followed by the
RNA-Seq library preparation, a multi-step process which needs to be customized depending
on the research question at hand. Typically, the RNA species of interest are first isolated from
the total RNA. A common protocol is the direct depletion of rRNA, which makes up the
majority of the total cellular RNA and would therefore suppress the signals from other less
abundant RNA species. Most protocols also focus on the enrichment of mRNA with the use
of poly-T oligos, which are covalently linked to magnetic beads and target the poly-A tail of
mRNA molecules. Another popular approach is the enrichment of miRNA by size selection
using gel electrophoresis. Next and universal to all preparation protocols, is the conversion of
RNA to cDNA through reverse transcription. After sequencing adaptors are ligated to the
ends of the cDNA fragments and subsequent amplification by PCR, the RNA-Seq library is
ready for sequencing. Depending on the experiment, further considerations regarding the
sequencing steps typically include single-end vs. paired-end sequencing, short read (50-100
bp) vs. long read (>1000 bp) and type of sequencing platform, with Illumina HiSeq
representing the most popular NGS technology used for RNA-Seq [51].

1.2.3 RNA-Seq data analysis

During an RNA-Seq experiment, millions of raw sequence reads are generated. This poses
significant computational challenges for the downstream analyses, which can be roughly
divided into the four steps: quality control, alignment, quantification and differential
expression analysis (Fig. 4b). In a first step, the sequence reads are checked for various
quality parameters including base call scores, guanine-cytosine (GC) content, overrepresented
k-mers, number of duplicated reads, sequencing errors and contaminations [53]. A popular
tool for streamlined quality control of raw reads is FastQC [54]. The raw reads that passed
quality control are then mapped against a reference genome or transcriptome or subjected to
de novo assembly. Aligning RNA reads against a reference genome is more complicated than
mapping of DNA reads, given that the reads generated in RNA-Seq will align across splice
junctions [51]. Two ‘splice-aware’ alignment tools developed for RNA-Seq analysis are

TopHat [55] and STAR [56]. The overall percentage of mapped reads is a central quality
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measure and is expected to range between 70-90 % [53]. RNA-Seq is most commonly used to
determine expression levels of genes or transcripts. As with other parts of the RNA-Seq
workflow, there is a wealth of different algorithms available for gene expression
quantification. Some applications like HTSeq-count [57] summate the raw counts of reads
mapping to given genomic coordinates that are indicative of specific genes or exons. Multi-
mapping reads are often discarded in such gene-level quantification approaches. Since read
raw counts are directly dependent on the feature’s length and the overall sequencing depth,
they cannot be compared between samples. Commonly used as expression values in RNA-
Seq are therefore the metrics RPKM (reads per kilobase of exon model per million reads) or
TPM (transcript per million), which normalize the read counts based on transcript length and
library size [53]. There is a range of advanced algorithms used for transcript-level expression
quantification. Such algorithms, including Cufflinks [58], RSEM [59] or Sailfish [60], take
into account the fact that highly similar transcripts share many of their reads and allocates
such multi-mapping reads between transcripts [53]. Differential expression analysis, e.g. the
identification of genes and pathways that are collectively up- or down-regulated in response
to varying conditions, marks the primary end-point of the RNA-Seq analysis. Detection of
such genes or transcripts can be achieved by a diverse set of algorithms. Statistical models
including edgeR [61] and DESeq?2 [62], that assume negative binomial distribution of RNA-

Seq read data have been shown to perform best in detecting differential expression [51].

1.2.4 Application of RNA-Seq in malaria vaccine research

We still remain with many unanswered questions on how exactly protective immunity against
malaria is mediated and why malaria-experienced people display overall weaker immune
responses compared to malaria-naive people undergoing the same PfSPZ vaccine regimen
[46]. With the entrance into the next-generation sequencing (NGS) era and the rapidly
evolving technical possibilities in generating vast amount of biological data, the field of
systems biology emerged [63]. As opposed to conventional immunological or molecular
assays, that target a specific component of the biological system, the systems biology
approach tries to compile a comprehensive picture of multiple molecular parameters and
interpret them as one coherent biological network. Several omics-technologies are thereby
exploited, including transcriptomics, e.g. the assessment of global gene expression changes
using RNA-Seq [63]. In principle, there are two major application of systems biology in

vaccinology. Namely, the prediction of vaccine immunogenicity and efficacy, and novel
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scientific discoveries pertaining to innate and adaptive immunological mechanisms [63]. A
prominent example for the utility of systems vaccinology approach is the yellow fever
vaccine, for which early molecular signatures were identified that prospectively predict the
vaccine immunogenicity in humans [64,65]. In malaria research, a systems biological
approach has been used to investigate the innate and adaptive protective immune response to
RTS,S malaria vaccination in humans. The results provided important insights on protective
molecular signatures that occur after vaccination, and that can potentially be used in the future

as biomarkers of protective efficacy of vaccine-induced immunity against malaria [66].
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1.3 Group B Streptococcus | Streptococcus agalactiae

1.3.1 GBS disease history

Group B Streptococcus (GBS; Streptococcus agalactiae) is a beta-hemolytic, gram-positive
bacterium, organized in pairs (diplococci) or short chains (Fig. 5a) and is a frequent,
asymptomatic commensal of the human gastrointestinal and genitourinary tracts [67]. S.
agalactiae has a broad host spectrum, including mammals, reptiles, amphibians and fish [68].
In 1887, GBS was for the first time identified as a pathogen in animals, causing bovine
mastitis [69]. The first reported case of fatal human GBS infection was reported in 1938 [70],
but it was not until the 1970s, when GBS emerged in the United States as one of the leading

causes of sepsis and meningitis in neonates and infants aged under 3 months [67].

1.3.2 Global GBS disease burden

GBS is worldwide a common colonizer of pregnant women. A recent comprehensive meta-
analysis that integrated available data from over 85 countries reported an adjusted estimate for
maternal GBS colonization worldwide of 18%. The prevalence rates are subjected to
considerable regional variation: From 11% to 13% in Southern and Eastern Asia, to 19.5% in
Western Europe (18.7% in Switzerland) to as high as 35% in the Caribbean [71]. Transition
from asymptomatic colonization to GBS invasive disease is declared when S. agalactiae is
isolated from normally sterile body sites, such as blood or cerebrospinal fluid accompanied by
clinical symptoms [72].

GBS is mostly recognized as a leading cause of neonatal and infant sepsis and meningitis.
Depending on the time frame of first manifestations of symptoms, GBS neonatal and infant
disease is categorized as early-onset disease (EOD), which occurs between days 0-6 of life
through vertical GBS transmission during delivery or late-onset disease (LOD), which occurs
between days 7-89 through vertical or horizontal GBS transmission. Globally, the combined
incidence risk for infant GBS disease is 0.49 per 1,000 live births, with case fatality rates
(CFR) varying between 4.7% in developed regions and 18.9% in Africa (global average CFR
of 8.4%). The estimated incidence risk for EOD is 0.41 per 1,000 live births, with an average
CFR of 10% (5% in developed regions, 27% in Africa). EOD manifests itself mainly as sepsis
(78%) or meningitis (16%). The incidence risk for LOD is 0.26 per 1,000 live births, with an
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average CFR of 7% (4% in developed regions, 12% in Africa). LOD manifests itself mainly
as sepsis (53%) and meningitis (43 %) [72]. The overall disease burden of EOD and LOD is
further increased by the fact that an estimated 18% of survivors of infant GBS meningitis
display moderate to severe neurodevelopmental impairments [73].

While research has traditionally focused on GBS neonatal disease, the broader spectrum of
GBS disease is increasingly acknowledged [74]. S. agalactiae is a significant contributor to
the annual global burden of 2.6 million stillbirths [75]. An estimated 4% of stillbirths in
Africa (1.1 million stillbirths/year) and 1% of stillbirths in developed regions are thought to
be associated with GBS colonization, suggesting that stillbirth might exceed GBS associated
neonatal disease [75]. Also, evidence is accumulating that GBS maternal colonization is
associated with preterm delivery [76]. GBS disease occurs also in adults, like in maternal
disease during pregnancy or post-partum. Data on how likely GBS colonization is resulting in
maternal sepsis remains scarce. An incidence rate of 0.38 per 1,000 pregnancies has been
reported in developed countries [77]. Although the risk of maternal mortality or morbidity is
low, maternal disease poses a further risk for the neonate [77]. Cases of GBS invasive
diseases in non-pregnant adults are increasing with mostly elderly and immunocompromised
patients suffering from underlying conditions like cancer, diabetes or HIV found to be more
susceptible [78,79]. The clinical manifestations of GBS disease in adults include bacteremia
without focus, skin and soft-tissue infection and pneumonia [79]. Adult invasive GBS disease
is mostly due to endogenous infection, where GBS switches from an asymptomatic
commensal to an invasive pathogen [80]. However, reports of food-borne GBS infection, i.e.
through the consumption of contaminated raw fish [81,82] or raw milk [83] highlight the

zoonotic potential of GBS.

1.3.3 GBS diagnosis and treatment in pregnant women

Clinical studies in the 1980s documented that intravenous administration of ampicilin or
penicillin to women at risk of GBS transmission during labor greatly reduced neonatal early-
onset disease [84,85]. Considering the threat of emerging antibiotic resistances and the
unknown long-term effect of antibiotic use on the neonatal microbiome, a universal
intrapartum antibiotic prophylaxis (IAP) approach for all pregnant women is regarded as
unfavorable. Two strategies are therefore commonly employed to ensure a targeted use of
IAP. The screen-based IAP approach employs culture-based screening of women late in

pregnancy (week 35-37 of gestation) for GBS colonization [86]. The consideration of both
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vaginal and rectal swabs for GBS carriage screening is essential as it significantly increases
testing sensitivity. Swabs are either inoculated into a selective enrichment broth with
subsequent transfer of colonies to selective agar or directly inoculated into selective agar.
Phenotypic characteristics including GBS pigment production or the beta-hemolytic
properties (Fig. 5b) can be detected using Granada agar and blood agar, respectively. In most
cases, additional confirmatory tests including CAMP test, latex agglutination test or MALDI-
TOF MS [87] are recommended (reviewed in [88]). While a positive finding is taken as basis
for subsequent IAP, culture-negative women are further assessed based on a second, risk-
based strategy. The risk-based IAP approach can vary between countries but commonly
considers known risk factors including maternal fever, prolonged rupture of membranes,
preterm delivery and previous birth to an infant with invasive GBS disease as precondition for
antibiotic administration. Both strategies, but specifically the screen-based approach are well
realizable in developed countries but are difficult to routinely implement in low and middle-
income countries, where the required laboratory structures are often lacking [86].
Nevertheless, the combined use of the IAP strategies have successfully reduced incidence of
EOD. It is estimated that the risk of EOD among GBS-colonized women is 1.1% (without
IAP), and linearly decreases with increased IAP coverage (0.3% risk if IAP at 80%) [89].
Case prevalence for LOD however, which is possibly acquired postpartum horizontally either
as nosocomial infection or through breast milk, remains unaffected by IAP guidelines [90]. A
further concern pertains to emerging antimicrobial resistance. Presently, GBS remains
susceptible to beta lactams but there have been reports of clinical isolates displaying

decreased susceptibility to this group of antibiotics [91,92].

1.3.4 GBS virulence factors

In order to cause invasive disease, GBS has to go through three consecutive steps: (i) The
successful colonization of the genitourinary tract, (ii) with subsequent crossing of either
placental and epithelial barriers, including the blood-brain barrier in case of meningitis and
(ii1) evasion of the immune system, mainly by avoiding phagocytic clearance [93]. A range of
GBS virulence factors involved in these steps of colonization, adhesion, invasion and evasion
have been identified: The main determinant and best-studied GBS virulence factor are the
capsular polysaccharides (CPS), each consisting of a combination of four monosaccharides
(glucose, galactose, n-acetylglucosamine, sialic acid) and together forming a dense coat on the

surface of S. agalactiae [94]. The sialic acid component of the GBS capsule is identical to a
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sugar epitope found on all mammalian cells, thereby contributing to reduced host cell
activation and dampened antibacterial immune response [95]. The main way GBS sialic acid
interferes with the human innate immune system is by impairing the complement system, e.g.
the deposition of C3 on the bacterial surface. This is accompanied by a decreased production
of the complement-derived chemoattractant C5a, which is central for mobilization of
neutrophils phagocytosing and intracellular killing. Combined, these mechanisms protect
GBS from opsonization, phagocytosis and intracellular killing [94]. To date, ten GBS-specific
CPS or serotypes (Ia, Ib, 11, III, IV, V, VI, VII, VIII, IX) have been described [96]. These
capsular serotypes display varying degrees of virulence, with the hyper-virulent serotype III
being the most clinically relevant. It is estimated that the majority of global cases of EOD
(47%) and LOD (73%) can be attributed to serotype III, followed by serotypes Ia, Ib and V
(22.8%, 8% and 10.6%, respectively, in EOD and 14.2%, 5.3% and 4.0%, respectively, in
LOD) [72].

An important feature for GBS cell adhesion are pili, which are cell-wall anchored,
filamentous structures extending from the bacterial surface. They are thought to play a central
role in epithelial colonization, biofilm formation, translocation and invasion [80]. Two pilus
islands (PI) have been described: pilus island 1 (PI-1) and pilus island 2 (PI-2), the latter
further divided into two variants PI-2a and PI-2b. PI-1 pili have been shown to be crucial for
evasion of macrophage-mediated phagocytosis but show less contribution to GBS epithelial
cell adhesion [50]. PI-2a pili play a central role in adherence and biofilm formation [98,99].
PI-2b pili contribute to increased intracellular survival in macrophages [100] and increased
strain invasiveness [80]. GBS strains either harbor a variant of PI-2 or a combination of a PI-2
variant and PI-1 for which no variants have been described [101]. The specific pilus
combinations thereby seem to be indicative of host specificity and disease presentation: For
instance invasive GBS strains generally display a combination of PI-1 and a PI-2 variant,
which stands in contrast to maternal colonizing strains [80]. Strains with bovine origin have
been shown to carry a PI-2b variant only, which renders them distinct from the human strains
[101]. Some other prominent surface proteins that are involved in GBS pathogenesis are the
fibrinogen-binding proteins including FbsA [102] and FbsB [103], the laminin-binding
protein (Lmb) and the streptococcal fibronectin-binding protein A (SfbA) [104,105], the
group B streptococcal C5a peptidase (ScpB) [106], the GBS immunogenic bacterial adhesin
(BibA) [107] and the alpha-like protein (Alp) family, including Alpha-C, the prototype alp
protein involved in colonization, invasion and translocation, and its other variants Alpl, Alp2,

Alp3, Rib and Alp4 [108].
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Figure 5: (a) Molecular structure of S. agalactiae (source: CDC). (b) Beta-hemolytic characteristics of GBS

when grown on blood agar. (c) Global geographical distribution of maternal colonizing GBS serotypes [71].

1.3.5 GBS global epidemiology

GBS strain identification is commonly carried-out based on the ten CPS. The traditional
serological method to determine the GBS serotype is latex agglutination [109], but more
recently, molecular methods based on PCR [110,111] or in silico serotype prediction from
GBS whole genome sequences [112] have emerged as viable alternatives.

There are geographical differences in the prevalence of the ten different GBS serotypes. A
recent systematic review, incorporating serotype data from more than 16,000 maternal
samples provided a comprehensive view on global GBS serotype distribution. Serotypes Ia,
Ib, II, IIT and V can be found as colonizer in women in all global regions, together accounting
for 98% of serotypes globally (Fig. 5c). Regional differences in the frequencies of specific

serotypes are evident. For instance lower prevalence of serotype III in Central America,
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South-eastern Asia and Western Africa and on average higher incidence of serotype V in
Western Africa. Interestingly, serotypes VI, VII, VIII and IX, which are uncommon on a
global scale, were found to be more frequent in Southern, South-eastern and Eastern Asia
[71]. Capsular serotype switching as a result of DNA exchange through homologous
recombination has been reported for GBS, and is thought to be a key contributor to clonal

diversification and emergence of novel serotypes [113—-115].

The current method of choice for epidemiological studies is based on multi-locus sequence
typing (MLST) [116], which has the advantage that it can be easily shared and compared
across different laboratories. MLST indexes nucleotide variation in the seven GBS
housekeeping genes alcohol dehydrogenase (adhP), phenylalanyl tRNA synthetase (pheS),
amino acid transporter (atr), glutamine synthetase (glnA), serine dehydratase (sdhA), glucose
kinase (glcK), and transketolase (tkt) and subsequently assigns an isolate to a corresponding
sequence type (ST). The ST can be further clustered into clonal complexes (CC), each
consisting of a single founder ST and its descending single-locus variants (SLV) [116].
Although there are presently over 1,300 different ST described in the global repository for
GBS isolates and sequence types (PubMLST) [117], the vast majority of circulating GBS
isolates can be attributed to one of the five major lineages CC1, CC10, CC17, CC19 and
CC23 [116]. The grouping of GBS strains into these lineages was found to be indicative of
their capsular serotype as well as their pathogenicity potential. For instance CC17, which was
found to harbor hypervirulent clones [116,118] and is strongly associated with the emergence
of GBS neonatal disease [119]. Subsequent studies reported the occurrence of CC67, a further
dominant lineage, consisting of GBS strains with obligate bovine origin [119]. The reason for
the global occurrence of conserved lineages has been a subject of intensive research. On the
basis of MLST, it was first speculated that the hypervirulent CC17 clone emerged from a
bovine ancestor [120]. More recent studies that employed comparative genomics analyses
indicated that GBS genomes are shaped by transfers of large DNA segments [121] and that
such large recombinatorial events are the driving force for the evolutionary emergence of the
dominant lineages [119]. It was proposed that GBS consists of a genetically highly diverse
core population, that displays no clear serotype-genotype correlations and possesses an almost
infinite gene pool, according to the concept of the bacterial pan-genome [122]. From this core
population, only few clones would from time to time successfully spread and form dominant,

globally-established lineages [119].
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An important work by Da Cunha et al. published in 2014, further expanded on the latter
studies and proposed that extensive use of the broad-spectrum antibiotic tetracycline from
1948 onwards led to the selection and subsequent emergence of few tetracycline resistant
clones. This evolutionary bottleneck driven by tetracycline usage resulted in the
disappearance of human GBS population diversity and the emergence of few dominant
lineages [123]. Among these, CC17 is thought to have emerged most recently since it was
found to be genetically most homogenous with relatively lower recombination rates compared
to the other CC and almost exclusively displays capsular serotype III [123]. The GBS strains
circulating in animal hosts have been shown to display significantly higher degrees of genetic
variability compared to strains belonging to the dominant human lineages. For instance the
increased genetic diversity within the bovine cluster CC67 [119], the genetically distinct
strains isolated from fish [124], or the novel GBS ST circulating in camels [125], all together
suggest that animals remain an under-researched reservoir of GBS strain diversity with

zoonotic potential.

1.3.6 Vaccine Development against GBS

The main mode of protection against GBS invasive disease is thought to be based on
opsonization and subsequent phagocytosis of the bacterium. The opsonization step requires
the deposition of complement components like C3b with or without specific antibody binding
to the bacterial surface [86]. Neonates have an immature immune system and therefore an
impaired ability to produce antibodies, especially against polysaccharide antigens [126].
Newborns therefore rely entirely on maternal antibody transfer for protection from early GBS
infection. Hence, the goal of GBS vaccination is to achieve high transplacental transfer of
CPS specific antibodies from the immunized mother, leading to protection of the newborn
during the early phase of life [86].

Already in the 1930s experiments by Lancefield in animal models indicated CPS-specific
antibody mediated protection from GBS infection [127,128]. In 1976 Baker et al.
demonstrated that low levels of maternal anti CPS type III antibody levels correlated with
increased neonatal susceptibility to GBS EOD and LOD and that transplacental transfer of
IgG immunoglobulins conferred protection to newborns [129]. The first generation of GBS
vaccines consequently consisted of purified type-III CPS. Although these vaccines were safe
and well tolerated in clinical trial assessment, they displayed only limited immunogenicity

[130]. In addition, these unconjugated polysaccharide vaccines failed to induce T cell

20



dependent B cell activation and B cell memory response [67]. The GBS vaccine development
then slowed down, mainly because of the high effectiveness of IAP treatment in reducing
cases of EOD and due to concerns regarding the acceptance and liability coverages for
maternal immunization [86].

Following the success of glycoconjugate vaccines against Neisseria meningitidis and
Streptococcus pneumoniae [131], the second generation of GBS vaccines constituted of CPS
antigens that were linked to highly immunogenic proteins. This conjugation elicits a long-
lasting adaptive immune response against the polysaccharide, inducing B and T cell memory,
B cell proliferation and antibody class switching [132]. Initially starting from a GBS type III
CPS / tetanus-toxoid (TT) glycoconjugate [133], the design of the vaccines have been further
adapted in order to achieve broader coverage against more GBS serotypes. The currently most
advanced glycoconjugate vaccine candidate is a trivalent vaccine (serotypes Ia, Ib and III).
Unlike its precursors, this vaccine is conjugated to CRM97, a non-toxic mutant of diphteria
toxin (DT), which is also used as carrier in already licensed glycoconjugate vaccines against
N. meningitidis and S. pneumoniae [134]. The trivalent GBS polysaccharide-CRM vaccine
has already undergone clinical evaluation in a phase I trial in non-pregnant women [135], a
phase II trial in pregnant-women [136] and a phase II study in pregnant, HIV-positive women
[137]. Results from the first two trials attest the trivalent CPS-CRM vaccine a good safety
profile and immunogenicity against all serotypes and successful transfer of antibodies to the
newborns. In the HIV-positive cohort, the vaccine was found to be safe, but less
immunogenic which could have implications regarding the protective efficacy of the vaccine
[137]. However, current GBS glycoconjugate vaccines have limitations in that they provide
serotype-specific immunity only, fail to cover non-serotypeable strains and are vulnerable
against capsular switching and replacement. A third generation of broad-coverage protein-
based GBS vaccines is attempting to overcome this hurdle. Through application of whole-
genome bioinformatics analyses of the rapidly increasing number of publicly available GBS
whole genome sequences (WGS), a range of novel protein vaccine candidates have been
identified in the last decades. GlaxoSmithKline (GSK) are investigating structural
components of the pili proteins as vaccine target and the company Minervax
(www.minervax.com) are conducting clinical evaluation of a vaccine targeting the alpha-like
protein family, reported to cover close to 100% of the GBS population [67]. Phase I trial
results indicate good safety profile and high immunogenicity of the vaccine, with induction of
IgG and IgA antibody production. The latter is of special interest given the possible IgA

antibody transfer via milk could protect newborns long after birth [55].
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An increased attention for the need of GBS vaccine development by governments and health
authorities can be observed in recent times. The WHO has released a technology roadmap in
2017 listing priority activities to achieve the strategic goal of development and licensure of a
safe, effective and affordable GBS vaccine for use in pregnant mothers in high, middle and
low income countries [139]. Looking ahead, an introduction of a licensed GBS vaccine will
require large-scale monitoring of vaccine recipients for GBS carriage and assessment of
vaccine impact on vaginal colonization. Building on our experience from glycoconjugate
vaccine introduction against S. pneumoniae [140,141], potential serotype replacement and

emergence of GBS escape strains will need to be surveyed closely [142].
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1.4 MALDI-TOF MS in clinical microbiology

1.4.1 Microbial species identification in clinical routine

The clinical characterization and identification of microbial species has undergone
fundamental shifts during the past decades, moving from time-consuming phenotyping tools
to molecular methods and lately to high-throughput proteomic typing systems [143].
Conventional methods initially classified microorganisms based on their phenotypic
properties, either based on morphological features like gram- staining that could be assessed
via microscopy, or based on biochemical methods, with microbes grown on selective media
[144]. Subsequent immunological, antibody-based assays like ELISA or agglutination assays
only partially achieved to overcome limitations of preceding methods [143]. A significant
improvement in both speed and accuracy of microbial characterization was achieved with the
introduction of a variety of molecular methods, including real-time PCR [145] and
fluorescence in situ hybridization (FISH) [146]. The gold standard for highly discriminatory
molecular microbe identification is based on 16S rRNA (for bacteria) or 18S rRNA (for
fungi) gene amplification and sequencing [147]. Although a powerful diagnostic tool, this
method is expensive, demanding in both infrastructure and technical knowledge and therefore
of limited use in clinical routine [143]. In parallel to the nucleotide sequencing methods,
matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF
MS), a method initially employed in the field of chemical sciences [143], evolved into a tool
for characterization of the microbial proteome. With its demonstrated high accuracy and
propensity for inexpensive and high-throughput microbial sample identification, MALDI-
TOF MS has emerged as a now widely accepted method in clinical routine microbiology and

epidemiology [143,144].

1.4.2 Principle of MALDI-TOF MS technology

In order to investigate the proteomic makeup of a microbial cell using MALDI-TOF MS, a
so-called soft-ionization technique is employed, allowing the analysis of high molecular
weight molecules. A microbial sample is, together with a low-mass organic solution (the
matrix) applied to a steel target plate (Fig. 6a). For microbiological applications of MALDI-

TOF MS, three matrices are commonly used including a-cyano-4-hydroxycinnamic acid
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(CHCA), 2,5-dihydroxy benzoic acid (DHB), and 3,5-dimethoxy-4-hydroxycinnamic acid
(sinapinic acid) [143]. The co-crystallized matrix-analyte mixture is subjected to a series of
short UV laser beams, leading to the direct release of molecules into the gas phase and the
formation of both sample and matrix ions. These ionized proteins are accelerated in a TOF
mass analyzer, racing through a linear flight tube at the end of which they collide with a
detector. The thereby recorded time-of-flight depends on the proteins mass-to-charge ratio
(m/z) and is subsequently used to determine the protein molecular weight. The combined TOF
information of thousands of measured proteins is summarized in a mass spectrum,
representing a unique protein mass fingerprint of the investigated microbe (Fig. 6b)

[143,144].
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Figure 6: (a) Overview of MALDI-TOF MS technique (source: https://infograph.venngage.com/p/171868/
maldi-tof-ms). (b) Bacterial (GBS) mass fingerprint generated by MALDI-TOF MS.

The quality of the mass spectrum, which can vary greatly depending on sample starting

material or chemical properties of the microorganism to be analyzed, is essential for
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successful microbial species assignment. Many microbes encountered in routine diagnostics,
including most gram-negative bacteria, are analyzed via direct cellular profiling, e.g. the
direct deposition of microbial colonies on the MALDI target plate together with matrix
solution [148,149]. This method has the obvious advantage of minimal pre-analysis sample
processing required, which facilitates high-throughput analysis in routine settings. For the
analysis of gram-positive bacteria, whose composition of the cell wall poses a challenge for
adequate ionization of the intracellular proteins, a pre MALDI-TOF MS analysis extraction
protocol using formic acid is often carried out for improved species identification [144,150].
Other pre-analysis sample processing methods that can be employed to increase spectral
quality for more demanding microbes, include treatment of microbial cells with ethanol,
acetonitrile and formic acid [151], protein precipitation using chloroform/methanol mixture

[152] or mechanical rupture of bacterial cells with bead beating [153].

1.4.3 MALDI-TOF MS in microbiological diagnostics

Based on its MALDI-TOF MS mass spectrum, genus or species identity of a microbe can be
reliably determined and in some cases even closely related strains can be distinguished
[148,154]. For this classification step, a generated protein mass spectrum is matched against a
set of representative spectra of known microbes deposited in a reference database. In the early
phase of MALDI-TOF MS development in the microbiology laboratory, mass spectra were
classified by comparison against in-house reference records. Given their highly customized
nature, such in-house databases can possess a high discriminatory capacity, making them a
suitable solution for targeted research purposes [144]. More common in routine diagnostic
laboratories, which need to cover a broad range of microorganisms, is the use of commercial
MALDI-TOF MS databases. Such databases contain thousands of reference spectra of
microbes commonly encountered in clinical settings and are permanently increasing in size,
as reference spectra of novel microbial species are added by the manufacturers. The two best-
established MALDI-TOF MS databases for microbiological identification are the MALDI-
Biotyper database, which was developed by Bruker Daltonics and the Vitek-MS database,
which was formerly known as SARAMIS and was jointly developed by Shimadzu and
BioMe¢érieux [143]. Both databases allow the user to manually add new reference mass spectra
and to develop custom databases, which is important for more targeted discriminatory
analyses that go beyond species level identification of organisms [144]. A hallmark step for

the application of MALDI-TOF MS in clinical microbiology was the recent regulatory
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approval of the MALDI-Biotyper and Vitek-MS platforms for the routine identification of
bacteria and yeasts, by the Food and Drug Administration (FDA) [155].

MALDI-TOF MS has rapidly developed into an extremely versatile tool in routine
microbiological diagnostics. In bacteriology, MALDI-TOF MS has been applied to identify a
broad range of species, isolated from blood, cerebrospinal fluids, stool and urine samples,
with an overall speed and accuracy that surpasses conventional diagnostic methods [143].
MALDI-TOF MS was also successfully applied for identifying food- or water-borne bacteria,
in the characterization of environmental bacterial species [156] and for the detection of agents
of biological warfare [143]. A further and highly relevant field of application is the rapid
detection of antimicrobial resistances using MALDI-TOF MS. Examples include the
discrimination of lineages and strains of methicillin-resistant Staphylococcus aureus
[157,158] and the identification of vancomycin-resistant enterococci [159,160]. MALDI-TOF
MS has been well described in the context of GBS identification and is considered a highly
reliable method for GBS confirmatory testing following bacterial cultivation on agar medium
[87]. There are studies that investigated strain-level typing of GBS employing MALDI-TOF
MS. Several protein masses that are specific for the hypervirulent ST17 and the emerging ST1
GBS clones were described [161-163].

1.4.4 Ribosomal subunit protein biomarkers

Although each of the common commercial databases uses their own algorithms and
interpretive criteria for microbial identification, they all operate on a pattern-recognition or
fingerprinting based approach [144]. Novel biomarker-based MALDI-TOF MS approaches
for the characterization of bacteria have been shown to perform excellent in terms of overall
sensitivity and discrimination of organisms below species level [164,165]. The numerous
proteins constituting the two ribosomal subunits, have been reported as ideal biomarker
candidates for MALDI-TOF MS by several authors [156,164—-167]. Proteins with molecular
weights between 2-20 kDa, which is the primarily considered mass range for microbial
identification by MALDI-TOF MS, make up an estimated 60-70% of a bacterial cells dry
weight. The vast majority of these proteins are ribosomal subunit proteins (rsp), thereby
accounting for most mass peaks contained in the MALDI spectra, along with other
housekeeping proteins like DNA-binding proteins, RNA chaperones and other proteins
involved in cell division and metabolism [143,168]. Given the fundamental role of the

ribosome within the bacterial cell, rsp are generally highly conserved, but nevertheless
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subjected to some inter-strain variability, making them an ideal target to deduce long-term
phylogenetic relationships and to distinguish between closely related strains [165,169]. Using
rsp as biomarkers requires access to WGS, e.g. knowledge of the in silico predicted rsp
molecular masses. Acquiring the WGS of thousands of bacterial species and strains may not
have been feasible twenty years ago but is now realistic, given the wealth of genomic data
becoming widely available [170]. Targeted, rsp-based MALDI-TOF MS therefore has a huge
potential for large-scale and high-throughput strain-level typing of organisms in the context of

epidemiological studies.
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1.5 Aims of this thesis

The United Nations sustainable developmental goal 3 (good health and well-being) includes
the goals to significantly reduce global maternal mortality and preventable deaths of
newborns and children under 5 years of age until the year 2030 [171]. We have contributed
with the work presented in this thesis to vaccine development efforts targeting two major
infectious diseases of infants and children in sub-Saharan Africa, namely P. falciparum

malaria and S. agalactiae invasive disease.
In the first part of this thesis, we aimed to:
1) Investigate the safety, immunogenicity and efficacy of a cryopreserved, radiation-
attenuated, whole P. falciparum sporozoite vaccine in Tanzanian volunteers followed by

homologous controlled human malaria infection (Chapter 2).

i1) Elucidate gene expression changes in peripheral blood upon controlled human malaria

infection in malaria pre-exposed, unvaccinated volunteers using RNA-Seq (Chapter 3).

In the second part of this thesis, we aimed to:

ii1) Develop a MALDI-TOF MS based typing method that allows sub-species level typing of
Group B Streptococcus for monitoring of vaccination impact on population structure

(Chapters 4 and 5).

iv) Confirm the inter-laboratory transferability of the novel MALDI-TOF MS typing method
for rapid screening and detection of GBS genotypes (Chapter 6).
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Chapter 2

Safety, Immunogenicity, and Protective Efficacy
against Controlled Human Malaria Infection
of Plasmodium falciparum Sporozoites Vaccine in

Tanzanian Adults

This chapter contains the following publication:

Said A. Jongo, Seif A. Shekalage, L.W. Preston Church, Adam J. Ruben, Tobias Schindler, Isabelle Zenklusen,
Tobias Rutishauser, Julian Rothen, Anneth Tumbo, Catherine Mkindi, Maximilian Mpina, Ali T. Mtoro,
Andrew S. Ishizuka, Kamaka Ramadhani Kassim, Florence A. Milando, Munira Qassim, Omar A. Juma,
Solomon Mwakasungula, Beatus Simon, Eric R. James, Yonas Abebe, Natasha KC, Sumana Chakravarty,
Elizabeth Saverino, Bakari M. Bakari, Peter F. Billingsley, Robert A. Seder, Claudia Daubenberger, B. Kim Lee
Sim, Thomas L. Richie, Marcel Tanner, Salim Abdulla and Stephen L. Hoffman. “Safety, Immunogenicity and
Protective Efficacy against Controlled Human Malaria Infection of Plasmodium falciparum Sporozoites Vaccine
in Tanzanian Adults”. 2018. Am J Trop Med Hyg.
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Safety, Immunogenicity, and Protective Efficacy against Controlled Human Malaria Infection of
Plasmodium falciparum Sporozoite Vaccine in Tanzanian Adults
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Abstract. We are using controlled human malaria infection (CHMI) by direct venous inoculation (DVI) of cryopreserved,
infectious Plasmodium falciparum (Pf) sporozoites (SPZ) (PfSPZ Challenge) to try to reduce time and costs of developing
PfSPZ Vaccine to prevent malaria in Africa. Immunization with five doses at 0, 4, 8, 12, and 20 weeks of 2.7 x 10° PfSPZ of
PfSPZ Vaccine gave 65% vaccine efficacy (VE) at 24 weeks against mosquito bite CHMI in U.S. adults and 52% (time to
event) or 29% (proportional) VE over 24 weeks against naturally transmitted Pf in Malian adults. We assessed the identical
regimen in Tanzanians for VE against PfSPZ Challenge. Twenty- to thirty-year-old men were randomized to receive five
doses normal saline or PfSPZ Vaccine in a double-blind trial. Vaccine efficacy was assessed 3 and 24 weeks later. Adverse
events were similar in vaccinees and controls. Antibody responses to Pf circumsporozoite protein were significantly lower
than in malaria-naive Americans, but significantly higher than in Malians. All 18 controls developed Pf parasitemia after
CHMII. Four of 20 (20%) vaccinees remained uninfected after 3 week CHMI (P = 0.015 by time to event, P = 0.543 by
proportional analysis) and all four (100%) were uninfected after repeat 24 week CHMI (P = 0.005 by proportional, P = 0.004
by time to event analysis). Plasmodium falciparum SPZ Vaccine was safe, well tolerated, and induced durable VE in four
subjects. Controlled human malaria infection by DVI of PfSPZ Challenge appeared more stringent over 24 weeks than
mosquito bite CHMI in United States or natural exposure in Malian adults, thereby providing a rigorous test of VE in Africa.

INTRODUCTION

In 2015 and in 2016, there were an estimated 429,000-730,500
deaths caused by malaria."® Plasmodium falciparum (Pf) is
the cause of > 98% of malaria deaths and > 80% of malaria
cases in sub-Saharan Africa. Our goal is to field a vaccine that
will prevent infection with Pf and thereby prevent all mani-
festations of Pf malaria and parasite transmission from
humans to mosquitoes.*

Plasmodium falciparum sporozoites (SPZ) are the only im-
munogens that have ever prevented Pf infection in > 90% of
subjects.®” Sanaria® PfSPZ Vaccine (Sanaria Inc., Rockuville,
MD) is composed of radiation-attenuated, aseptic, purified,
cryopreserved PfSPZ.8° When administered by rapid in-
travenous injection, PfSPZ Vaccine protected 100% (6/6) of
malaria-naive subjects in the United States against mosquito
bite—controlled human malaria infection (CHMI) with Pf para-
sites similar to those in the vaccine (homologous) 3 weeks after
the last immunization,'® and 65% at 24 weeks."" Protection
was durable against homologous mosquito bite CHMI for at
least 59 weeks'? and heterologous (parasites different than in
vaccine) mosquito bite CHMI for at least 33 weeks.'® PfSPZ
Vaccine also prevented naturally transmitted heterogeneous
Pf in adults in Mali for at least 24 weeks (vaccine efficacy [VE]
52% by time to event and 29% by proportional analysis)."

We used the same dosage regimen as in the United States
and Mali to evaluate the tolerability, safety, immunogenicity,
and VE of PfSPZ Vaccine in young adult male Tanzanians.

* Address correspondence to Stephen L. Hoffman, Sanaria Inc., 9800
Medical Center Dr., Suite A209, Rockville, MD 20850. E-mail:
slhoffman@sanaria.com

T These authors contributed equally to this study.

Previously, we had conducted the first modern CHMI in Africa
and showed that injection of aseptic, purified, cryopreserved
PfSPZ, Sanaria® PfSPZ Challenge, consistently infected
Tanzanian volunteers and subsequently repeated in multiple
other countries.'®2" In this study, we took advantage of this
capability to assess VE of PfSPZ Vaccine by CHMI with PfSPZ
Challenge (NF54). The same PfSPZ Vaccine dosage regimen
was less immunogenic and protective in Tanzanians than in
Americans,"" and VE against homologous CHMI in Tanzania
was lower (or similar) to VE against intense field exposure to
heterogeneous Pf parasites in Mali.'

MATERIAL AND METHODS

Study design and population. This double-blind, ran-
domized, controlled trial was conducted in Bagamoyo, Tan-
zania, between April 2014 and August 2015. Sixty-seven
healthy male volunteers of 18-35 years of age were recruited
from higher learning institutions in Dar es Salaam. After initial
screening, prospective volunteers were invited to the Bag-
amoyo Clinical Trial Unit of the Ifakara Health Institute (IHI) to
complete informed consent and screening.

All had to complete a 20-question assessment of trial un-
derstanding with a 100% correct response rate on the first or
second attempt (Supplemental Table 1) to be eligible. Volun-
teers were screened using predetermined inclusion and ex-
clusion criteria (Supplemental Tables 2 and 3). History of
malaria in the previous 5 years or antibodies to Pf exported
protein 1 (PfEXP1) by an enzyme-linked immunosorbent assay
(ELISA) above a level associated with a single, recent Pf in-
fection by CHMI'® (see the Antibody assays section) were the
exclusion criteria. Hematology, biochemistry, and parasitol-
ogy testing, including malaria thick blood smear (TBS), stool,

30



PFSPZ VACCINE SAFETY, IMMUNOGENICITY, EFFICACY IN TANZANIA

and urine by microscopy was carried out. Tests for human
immunodeficiency virus and hepatitis B and C were performed
after counseling; volunteers were excluded if positive and
referred for evaluation and management by appropriate local
physicians. Volunteers were excluded if they had significant
abnormalities on electrocardiograms.

The trial was performed in accordance with Good Clinical
Practices. The protocol was approved by institutional review
boards (IRBs) of the IHI (Ref. No. IHI/IRB/No:02-2014), the Na-
tional Institute for Medical Research Tanzania (NIMR/HQ/R.8a/
Vol.IX/1691), the Ethikkommission Nordwest-und Zentral-
schweiz, Basel, Switzerland (reference number 261/13), and by
the Tanzania Food and Drug Authority (Ref. No. TFDA 13/CTR/
0003); registered at Clinical Trials.gov (NCT02132299); and
conducted under U.S. FDA IND application.

Investigational products (IPs). The IPs were Sanaria®
PfSPZ Vaccine®'* and Sanaria® PfSPZ Challenge.'®2° PfSPZ
Vaccine consists of aseptic, purified, vialed, metabolically ac-
tive, nonreplicating (radiation attenuated), cryopreserved
PfSPZ (NF54 strain). It was stored, thawed, diluted, and ad-
ministered by direct venous inoculation (DVI) in 0.5 mL through
a 25-gauge needle.'’'41820 pfgp7 Challenge is identical to
PfSPZ Vaccine except it is not radiation attenuated. It was
handled and administered like PfSPZ Vaccine. Preparation of
IPs was supervised by the study pharmacist. After labeling the
syringe, the pharmacist handed it to the clinical team through a
window.

Allocation and randomization. Volunteers were allocated
to five groups (Table 1; Figure 1). Forty-nine received PfSPZ
Vaccine and eight normal saline (NS). Ten were additional in-
fectivity controls. The clinical team and volunteers were blin-
ded to assignment to vaccine or NS until study end.

Group 1. Three volunteers received consecutive doses of
3x10% 1.35x 10°% and 2.7 x 10° PfSPZ of PfSPZ Vaccine at 4-
week intervals to assess safety (Group 1).

Groups 2 and 3. Volunteers were randomized to receive
1.35 x 10° PfSPZ of PfSPZ Vaccine (N = 20) or NS (N = 4)
(Group 2), or 2.7 x 10° PfSPZ of PfSPZ Vaccine (N = 20) or NS
(N =4)(Group 3)at0, 4, 8, 12, and 20 weeks.

Group 4. Six volunteers were immunized with 2.7 x 10°
PfSPZ of PfSPZ Vaccine on the same schedule as Group 3.

Group 5. Ten volunteers served as unblinded infectivity
controls during CHMIs (see in the following paragraph): two
with CHMI #1, two with CHMI #2, and six with CHMI #3.

Vaccine efficacy. Controlled human malaria infection.
Vaccine efficacy was assessed by CHMI by DVI of 3.2 x 103
PfSPZ of PfSPZ Challenge. Controlled human malaria in-
fection #1 was 3 weeks after the last immunization in Group 2.
Controlled human malaria infection #2 was 3 weeks after the

last immunization in Group 3. Controlled human malaria in-
fection #3 was 24 weeks after the last immunization in Groups
3 and 4 and included the four volunteers in Group 3 who did
not develop parasitemia after CHMI #2 and the six Group 4
volunteers. Volunteers were inpatients from day 9 after PfSPZ
Challenge injection for observation until diagnosed and
treated for malaria or until day 21; daily outpatient monitoring
for TBS-negative volunteers continued until day 28. Thick
blood smears were obtained every 12 hours on days 9-14 after
CHMI and daily on days 15-21 until positive or until day 21.
Thick blood smears could be performed more frequently, if
volunteers had symptoms/signs consistent with malaria. After
initiation of treatment, TBSs were assessed until two con-
secutive daily TBSs were negative and on day 28.

Detection of Pf parasites and parasite DNA. Slide prepara-
tion and reading for TBSs were performed as described.'®
Sensitivity was 2 parasites/uL blood unless the volunteer was
symptomatic, in which case four times as many fields were
read. Parasitemia was also determined by quantitative poly-
merase chain reaction (QPCR) with sensitivity of 0.1 parasites/
WL blood based on a multiplex assay detecting Plasmodium
spp. 18S genes and the human RNaseP gene as endogenous
control.?? A second, more sensitive qPCR assay with a sen-
sitivity of 0.05 parasites/pL blood and targeting the Pf-specific
telomere-associated repetitive element 22° was used to
reanalyze all samples that were negative by 18S-based gPCR.
After the start of CHMI, the time of first blood sample positivity
by gPCR was used to determine infection status and for the
calculation of prepatent period. Volunteers were continuously
monitored by qPCR until malaria treatment based on TBS
positivity. The World Health Organization International Stan-
dard for Pf DNA Nucleic Acid Amplification Techniques
(NIBSC, Hertfordshire, United Kingdom) was used as stan-
dard for calculation of parasite densities. DNA was extracted
from 100 pL whole blood and eluted with 50 pL Elution Buffer
using Quick-gDNA Blood MicroPrep Kit (Zymo Research,
Irvine, CA). Blood samples were analyzed retrospectively by
gPCR after storing at —80°C after the conclusion of CHMIs. To
exclude field strain infections, parasite genotyping was per-
formed on samples randomly chosen as described.?* In all
cases in which TBS was negative and gPCR was considered
positive, two consecutive samples were positive by gPCR.

Adverse events (AEs). Volunteers were observed as in-
patients for 48 hours after administration of IP and discharged
with diaries and thermometers for recording AEs and tem-
peratures and followed with daily telephone calls. Symptoms
and signs (solicited and unsolicited) were recorded and
graded by physicians: mild (easily tolerated), moderate
(interfere with normal activity), severe (prevents normal activity),

TasLE 1
Demographic characteristics of volunteers

Vaccinees Normal saline controls Infectivity controls
Number of volunteers 49 8 10
Percentage males 100% 100% 100%
Mean age in years (range) 24 (20, 30) 23 (20, 28) 25 (21, 28)
Percentage Africans 100% 100% 100%
Mean body mass index (range) 22.33(18.00, 29.70) 21.91 (19.00, 24.20) 21.68 (18.40, 24.30)
Number (%) heterozygous for alpha thalassemia 22 (44.9%) 4 (50%) 5(50%)
Number (%) with LTBI* (QuantiFERON positive) 17 (34.7%) 3 (36.5%) 1(10%)
Number (%) positive on screening of urine or stool for parasitic infection 0 (0%) 1(12.5%) 0(0%)
Number (%) students 49 (100%) 8 (100%) 10 (100%)

*Latent tuberculosis infection.
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| 135 volunteers screened |

68 excluded:
(27) Volunteers had antibodies to EXP-1 above
established cut-off

O (27) Volunteers were not available when invited
for vaccination (Investigator decided to terminate

67 volunteers eligible

Allocation

them after window of 120 days from day of first
screening to the day of enrollment expired)
(11) Volunteers withdrew consent
(1) Volunteer had positive hepatitis C virus tests
(1) Volunteer had allergy to sulfa-based drugs

O (1) Volunteer had abnormal ECG

!

!

! }
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Ficure 1. Volunteer participation (CONSORT 2010 diagram). This figure appears in color at www.ajtmh.org.

or life threatening. Axillary temperature was grade 1 (> 37.5—
38.0°C), grade 2 (> 38.0-39.0°C), grade 3 (> 39.0-40.0°C), or
grade 4 (> 40.0°C). Hematological and biochemical abnormali-
ties were also assessed using standard clinical assays.

During the first 7 days after injection of IPs, prespecified
local (site of injection) and systemic AEs were solicited. Open-
ended questioning was used to identify unsolicited AEs
through day 28 (Supplemental Table 4). All AEs were assessed
for severity and relatedness to IP administration. Adverse
events were classified as definitely related, probably related,
possibly related, unlikely to be related, and not related. Defi-
nitely, probably, and possibly were considered to be related.
Unlikely to be related and not related were considered to be
unrelated. For CHMIs, volunteers returned on day 9 for admission
to the ward for diagnosis and treatment of malaria. Events during
the 8-28 day period were assessed for relationship to Pfinfection
and considered related if the event was within 3 days before and
7 days after TBS was first positive.

Antibody assays. Sera were assessed for antibodies
by ELISA, immunofluorescence assay (alFA), and inhibition
of sporozoite invasion (ISI) assay as described (see Supplemental
Table 5).2° For ELISAs, the results are reported as the serum di-
lution at which the optical density (OD) was 1.0. Enzyme-linked
immunosorbent assay for PFEXP1 was used to screen volunteers
for possible malaria exposure (Supplemental Table 6). Any
subject with an OD 1.0 of > 600 was excluded. This was be-
cause we had previously determined in Tanzanians who un-
derwent CHMI® that antibodies to PfEXP1 at this level were a
sensitive indicator of recent Pf infection (unpublished).

T-cell assays. T-cell responses in cryopreserved peripheral
blood mononuclear cells (PBMC) were measured by flow
cytometry in a single batch after the study as described.'?
After stimulation, cells were stained as described.?® The
staining panels are in Supplemental Table 7 and antibody
clones and manufacturers are in Supplemental Table 8. All
antigen-specific frequencies are reported after background
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subtraction of identical gates from the same sample incubated
with control antigen. Data were analyzed with FlowJo v9.9.3
(TreeStar, Ashland, OR) and graphed in Prism v7.0a (Graph-
Pad, San Diego, CA).

Statistical analysis. Comparisons of categorical variables
between groups were analyzed using 2-tailed Fisher’s exact
test. Comparisons of continuous variables between groups
were analyzed by 2-tailed nonparametric tests. For multiple
group comparisons, the Kruskal-Wallis test was used. Time to
event was assessed by the Kaplan—-Meier curves and log-rank
test. Vaccine efficacy by time to event was quantified using
Cox proportional hazards ratios. Time to event data were
analyzed from CHMI injection until positive TBS result or
positive gPCR result. Controlled human malaria infection
follow-up period lasted until day 28 after CHMI injection.
Analyses of immunological data are described with the data.

Role of the funding source. The funders were involved in
study design, study management, data collection, data anal-
ysis, data interpretation, and writing the report. Salim Abdulla
and Stephen L. Hoffman had full access to all data in the study
and final responsibility for decision to submit for publication.

RESULTS

Study population and experience with DVI. Fifty-seven
Tanzanian men (Table 1; Figure 1) met the criteria (Supplemental
Tables 2 and 3) and received PfSPZ Vaccine (N = 49) or NS
(N = 8). All volunteers had AA hemoglobin and normal G6PD
activity. Thirty-one volunteers (46 %) were heterozygous for
a-thalassemia; 21 had evidence of latent tuberculosis in-
fection by Quantiferon testing, but showed no evidence of
active tuberculosis. One volunteer (group 2, NS) had
Strongyloides stercoralis on screening and was success-
fully treated before vaccination (Table 1).

Of 237 immunizations with PfSPZ Vaccine, 234 were com-
pleted with a single injection (98.7%). Two hundred and thirty

injections (97.0%) were considered painless by the volunteer.
For NS subjects, 39 of 40 immunizations (97.5%) were com-
pleted in a single injection and 39 of 40 (97.5%) considered
painless by the volunteer. The nurse performing immuniza-
tions considered the procedure to be simple in 265 of 273
single injections (97.1%).

One subject in Group 2 received four immunizations. The
third immunization was withheld while the subject was evalu-
ated for what was diagnosed as benign ethnic neutropenia.?”-?®
One subject in Group 4 missed his second immunization when
he left town. All other subjects (other than Group 1 and added
infectivity controls) received five immunizations.

Safety. Among 49 volunteers who received 237 doses of
PfSPZ Vaccine, there were 17 solicited AEs possibly related to
IP (17/237 =7.2%) in 10 of the 49 vaccinees (20.4%) (Table 2).
Among eight volunteers who received 40 doses of NS, there
were two solicited AEs possibly related to IP (2/40 = 5.0%) in
one of the eight controls (12.5%) (Table 2). There were no AEs
considered by the clinicians to be probably or definitely related
to IP. There were no local or serious AEs. One episode each of
headache and fever were grade 2; all other solicited AEs were
grade 1. None of the comparisons of AEs between vaccinees
and controls or between Group 2 (1.35 x 10° PfSPZ) and
Groups 3 and 4 (2.7 x 10° PfSPZ) showed statistically signif-
icant differences (Table 2). Twenty-six of 49 vaccinees (53.1%)
experienced 43 unsolicited AEs (0.88/individual) in the 28 days
following injections #1-#4 and the 21 days before CHMI after
injection #5. Seven of eight controls (87.5%) experienced 14
unsolicited AEs (2/individual) during this period. None of these
unsolicited AEs recorded within 28 days of an immunization
was considered related to IP.

Laboratory abnormalities occurred at roughly equal rates
comparing PfSPZ Vaccine recipients and controls, except for
leukocytosis and eosinophilia, which were more frequent in
controls (Table 3). There was no apparent explanation for
these differences. A cyclic variation in total bilirubin following

TABLE 2
Solicited AEs by group considered possibly* related to administration of the investigational product during the first 7 days post immunization

Group 1 (dose escalation) ~ Group 2 (1.35 x 10° PfSP2)

Group 3 (2.7 x 10° PfSPZ)  Group 4 (2.7 x 10° PfSPZ)  Total PfSPZ vaccine NS controls

Number of volunteers 3 20
Total number of injections 9 99
Number of local AEs 0 0
Numbers of systemic AEs (% of total immunizations)
All 1(11%) 10 (10.1%)
Headache* 1(11%) 7 (7%)T
Abdominal pain 0 2 (2%)
Chills 0 0
Fever 0 0
Diarrhea 0 0
Chest pain 0 1(1%)
Other 0 0
Systemic AEs - no. volunteers with > 1 event (% of volunteers)
Any 1(33%) 7 (35%)
Headache 1(83%) 6 (30%)
Abdominal pain 0 2 (10%)
Chills 0 0
Fever 0 0
Diarrhea 0 0
Chest pain 0 1(5%)
All other 0 0

20 6 49 8
100 29 237 40
0 0 0 0
6 (6%) 0 17 (7.2%) 2 (5.0%)
2 (2%) 0 10 (4.2%) 1(2.5%)
1 (1%) 0 3(1.3%) 0
1 (1%) 0 1 (0.4%) 0
2 (2%) 0 2(0.8%) 0
0 0 0 1(2.5%)
0 0 1 (0.4%) 0
0 0 0 0
2 (10%) 0 10 (20.4%)  1(13%)
2 (10%) 0 9(18.4%)  1(13%)
1 (5%) 0 3(6.1%) 0
1 (5% 0 1 (2.0% 0
2 §1o% 0 2 24.1 %; 0
0 0 0 1 (13%)
0 0 1(2.0%) 0
0 0 0 0

AEs = adverse events; PfSPZ = Plasmodium falciparum sporozoites. There were no significant differences between vaccinees as compared with normal saline (NS) controls for any or all AEs. All
AEs were grade 1, except one headache and one fever. Local solicited AEs: injection site pain, tenderness, erythema, swelling, or induration. Systemic solicited AEs: allergic reaction (rash, pruritus,
wheezing, shortness of breath, bronchospasm, allergy-related edema/angioedema, hypotension, and anaphylaxis), abdominal pain, arthralgia, chest pain/discomfort, chills, diarrhea, fatigue, fever,

headache, malaise, myalgia, nausea, pain (other), palpitations, shortness of breath, and vomiting.
*All AEs were considered possibly related. None were considered probably or definitely related.

1 4/7 episodes of headache occurred after the third vaccine dose and did not recur with fourth or fifth doses. No factor was identified to account for this apparent clustering of headache.

33



JONGO, SHEKALAGE AND OTHERS

each immunization was observed equally in volunteers re-
ceiving vaccine or NS that was attributed to enriched diet, as
the volunteers were transported to Bagamoyo from Dar es
Salaam during the periods of immunization and CHMI and
were amply fed (see Supplemental Figure 1). In Dar es Salaam,
malaria transmission is low. No volunteer had malaria during
screening or during the trial other than from CHMI.

Tolerability, safety, and VE during CHMI. Forty-six vac-
cinees, eight NS controls, and 10 added infectivity controls
underwent homologous CHMI. All subjects were negative by
TBS and gPCR for Pf infection on the day of CHMI. Two vol-
unteers were excluded from primary analysis—a Group 2
volunteer who left the area 2 days after administration of
PfSPZ Challenge and a Group 4 volunteer who left 9 days
after. Both volunteers were located and treated preemptively.

Tolerability and safety of administration of PISPZ challenge.
Controlled human malaria infection was well tolerated with no
local solicited AEs and three systemic solicited AEs (grade 1
headache in Group 3, grade 2 headache in Group 4, and grade
1 arthralgia in an infectivity control) in the 7 days post-
administration of PfSPZ Challenge.

Parasitemia. Controls. The 18 NS and infectivity controls
developed Pf infection after CHMI (16 TBS and gPCR positive
and two TBS negative and gPCR positive) (Figure 2A-D and
Supplemental Table 9). These included four NS and two in-
fectivity controls in CHMI #1, the same in CHMI #2, and six
infectivity controls in CHMI #3. All received the same lot of
PfSPZ Challenge. One isolate of those positive from CHMI #1,
one from CHMI #2, and four from CHMI #3 were genotyped,?*
and all parasites tested were PfNF54. Vaccine efficacy was
calculated based on the results of gqPCR assays from the six
controls in CHMI #1, CHMI #2, and CHMI #3 individually
(Figure 2D).

Group 2 (1.35 x 10° PfSPZ). Seventeen of 18 volunteers who
received five doses and 1/1 volunteer who received four doses
developed parasitemia (Figure 2A), 15 positive by TBS and
gPCR, and 3 by gPCR only (CHMI #1) (Supplemental
Table 10). One volunteer was negative through day 28 by
TBS and gPCR. Vaccine efficacy by proportional analysis

was 5.56% (95% confidence interval [Cl]: 3.61%), 14.73%;
P>0.99, Fisher’s exact test, 2-tailed). There was no significant
delay in parasitemia by gPCR in the vaccinees as compared
with controls (P = 0.4481 by log rank).

Group 3 (2.7 x 10° PfSPZ). First CHMI at 3 weeks (CHMI #2):
16/20 volunteers who received five doses developed para-
sitemia (Figure 2B), all positive by TBS and qPCR; four vol-
unteers were negative through day 28 by TBS and gPCR.
Vaccine efficacy by proportional analysis was 20% (95% CI:
4.62%, 35.38%; P = 0.543). There was a delay in the onset of
parasitemiain vaccinees as compared with controls (P=0.015
by log rank).

Second CHMI at 24 weeks (CHMI #3): The four uninfected
volunteers from the first CHMI underwent a second CHMI
24 weeks after the last vaccine dose (Figure 2C). Three were
negative by TBS and qPCR through day 28 day. The fourth
volunteer, who was asymptomatic, was reported to have a
positive TBS on day 12 and treated. The sample with positive
TBS was negative by retrospective gPCR. Reevaluation of the
TBSindicated an error in slide reading (false-positive). Vaccine
efficacy by proportional analysis at this time point was 100%
(for 3/3 and 4/4 protected: 95% CI: 43.8%, 100%, and 51.01%,
100%; P = 0.012 and 0.005, respectively). However, given the
20% VE at 3 weeks by proportional analysis, overall VE by pro-
portional analysis was considered to be 20%.

Group 4 (2.7 x 10° PfSPZ). First CHMI at 24 weeks after the
last vaccine dose (CHMI #3): 4/5 vaccinees developed para-
sitemia by TBS and gPCR. The fifth was negative by TBS, but
positive by gPCR (see Supplemental Table 10). There was one
excluded volunteer (see the previous paragraph). Vaccine ef-
ficacy by proportional analysis was 0% (P >0.99%). There was
a significant delay in the onset of parasitemia by gPCR in
vaccinees as compared with controls (P = 0.001 by log rank).

a-thalassemia. Volunteers heterozygous for a-thalassemia
were no more likely to be TBS negative and qPCR positive
than volunteers without a-thalassemia (three of 27 versus
three of 34, P = 1.0). Protection from CHMI did not correlate
with a-thalassemia status; 3/37 with normal hemoglobin and
2/29 heterozygous for a-thalassemia were protected.

TaBLE 3
Summary of abnormal laboratory values and severity grades

Vaccinees in Group 2
(1.35 x 10° PfSP2)
(N =20)

Vaccinees in groups 3
and 4 (2.7 x 10° PfSPZ)
(N = 26)

NS controls (N = 8) P values: vaccinees

(N =46) vs.
Laboratory parameter No. % No. % No. % controls (N = 8)

Leukocytosis 1 5 2 7.7 3 37.5 0.0358
Leukopenia 6 30 7 27 1 12.5 >0.05
Neutropenia 6 30 5 19 2 25 >0.05
Lymphopenia 3 15 3 11.5 2 25 >0.05
Eosinophilia 0 0 2 7.7 3 37.5 0.0194
Decreased hemoglobin 1 5 0 0 0 0 >0.05
Thrombocytopenia 1 5 0 0 0 0 >0.05
Elevated creatinine 2 10 4 15.4 2 25 >0.05
Low total bilirubin 4 20 7 27 1 12.5 >0.05
Elevated total bilirubin 2 10 2 7.7 2 25 >0.05
Elevated alkaline phosphatase 1 5 2 7.7 0 0 >0.05
Elevated alanine aminotransferase 3 15 5 19 2 25 >0.05
Elevated aspartate aminotransferase 0 0 3 115 0 0 >0.05

PfSPZ = Plasmodium falciparum sporozoites. P values calculated using Fisher’s exact test (2-tailed). One volunteer who received saline developed Grade 3 eosinophilia attributed to Strongyloides
stercoralis infection, which improved with anthelminthic therapy. This volunteer had a baseline of mild eosinophilia, which persisted throughout the clinical trial. All other laboratory abnormalities
were Grade 2 or less. There was no association between laboratory abnormalities and time after a dose or increasing number of doses. Three abnormalities during immunization were deemed
clinically significant or Grade 3. One was diagnosed as benign ethnic neutropenia, one was lymphopenia associated with an infected foot laceration, and one was eosinophilia associated with
Fasciolopsis buskiand S. stercoralis infection. Lymphopenia and eosinophilia resolved with treatment. Two Group 4 volunteers had asymptomatic hookworm infections diagnosed before controlled
human malaria infection; one was coinfected with Enterobius vermicularis.
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Ficure 2. Kaplan-Meier survival curves in immunized volunteers vs. controls as assessed by quantitative polymerase chain reaction (QPCR).
Kaplan-Meier curves in volunteers undergoing controlled human malaria infection (CHMI) 3 weeks after the last of five doses with 1.35 x 10° (Group
2) (A) or 2.7 x 10° (Group 3) (B) Plasmodium falciparum Sporozoites (PfSPZ) of PfSPZ Vaccine. Panel (C) volunteers undergoing either first (Group 4)
or second (Group 3) CHMI 24 weeks after the fifth immunization with 2.7 x 10° PfSPZ of PfSPZ Vaccine. (D) Vaccine efficacy and prepatent period
results. *This was the second CHMI for the 4 volunteers in Group 3 who were protected after the first CHMI at 3 weeks. **One volunteer was
inappropriately treated on day 13 for a false positive TBS. Without this volunteer, 3/3 protected. With this volunteer 4/4 were protected. ***Confi-
dence intervals were calculated using Wilson’s score interval. ***Volunteers in CHMI #1 and #2 (3 week CHMI in Groups 2 and 3) had specimens first
acquired on day9. Volunteers in CHMI #3 (24 week CHMI in Groups 3 and 4) had specimens first acquired on day 8. This figure appears in color at

www.ajtmh.org.

Prepatent periods and parasite densities. Although the
median prepatent periods by TBS in controls in each CHMI
group (12.5, 13.0, and 12.0, respectively) were shorter than in
the vaccinees in Groups 2-4 (14.0, 14.0, and 15.3 days, re-
spectively), these differences did not reach the level of sta-
tistical significance (P = 0.486, P = 0.491, and P = 0.333,
respectively) (Supplemental Table 9). The prepatent periods
by gPCR in vaccineees in Group 3 (3 and 24 week CHMIs) and
Group 4 (24 week CHMI) were significantly longer than in the
respective controls (Figure 2D). The parasite densities by
gPCR and TBS at the time of diagnosis for each individual are
in Supplemental Table 10. The median parasite density in
controls versus vaccinees at the time of first positivity were 0.5
versus 0.4 parasites/uL for gPCR (P =0.5714) and 11.2 versus
15.0 parasites/uL for TBS (P = 0.1492).

Tolerability and safety of parasitemia during CHMI. Controls.
Sixteen controls developed parasitemia by TBS; 9 (56%)
never had symptoms (Supplemental Table 11). Headache
occurred in 7/7 symptomatic individuals. One of two control
volunteers only positive by gPCR did not have any symptoms;
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the second had headache 8 days after g°PCR spontaneously
reverted to negative. No volunteer had symptoms at the time
of first positive gPCR.

Vaccinees. Thirty-five immunized volunteers developed
parasitemia by TBS; 20 (57%) never had symptoms. Three
volunteers had temperature > 39.0°C; all other clinical mani-
festations were grade 1 or 2. Fever (28.6%) and headache
(81.4%) were most common. Compared with controls, ele-
vated temperature was more common in vaccinees with
positive TBSs (9/35 versus 0/16, P = 0.043). There was no
significant difference in the frequency of headache between
controls and vaccinees. In the three volunteers in Group 2 who
were qPCR positive and TBS negative, one developed head-
ache 3 days after gqPCR positivity. No volunteer had symp-
toms at the time of first positive gPCR.

Clinical laboratories. No unexpected changes were ob-
served following CHMI. Declines in lymphocyte counts were
observed in TBS positive controls and vaccinees (mean de-
cline 1,110 £ 720 cells/uL and 1,180 + 680 cells/uL, re-
spectively) on day of first positive TBS. Absolute lymphocyte
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counts less than 1,000 cells/uL were observed in 8/16 and
16/35 TBS positive controls and vaccinees. All lymphocyte
counts returned to the baseline by day 28. There were mild
decreases in platelet counts in TBS positive subjects, but all
platelet counts were > 100 x 10° cells/uL.

Treatment. VVolunteers with positive TBSs were treated with
either atovaquone/proguanil (N = 43) or artemether/lumefantrine
(N = 8) within 24 hours of first positive TBS. Normal saline and
infectivity controls who were TBS negative (N = 2) were treated at
day 28.

Immunogenicity. Antibody responses. Pf circumsporo-
zoite protein (PfCSP) and PfSPZ. Antibodies against PfCSP by
ELISA 1), PfSPZ by alFA 2), and PfSPZ by ISI 3) in sera taken
2 weeks after the last vaccine dose and just before CHMI
(20-23 days after the last dose) for Groups 2 (CHMI #1) and 3
(CHMI #2) are in Figure 3A-C. The median responses and
those uninfected and infected by gPCR are shown.

For all three assays, median antibody responses before first
CHMI were higher in uninfected than in infected vaccinees.
There was a significant difference in median net alFA
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Ficure 3.  Antibody responses to Plasmodium falciparum Sporozoites (PfSPZ) and PfCSP before controlled human malaria infection (CHMI). For
all assays, uninfected subjects are shown as filled (black) circles and infected subjects are open circles. For each of the defined subject groups, the
interquartile ranges and the median values of response of subjects in each group are shown. Assessment of antibodies was performed in sera from
subjects before immunization and before CHMI #1 (~2 weeks after the last dose of PfSPZ Vaccine or normal saline [NS]) and/or CHMI #2 (~24 weeks
after last dose of PfSPZ or NS) (A, D). Antibodies to PFCSP by ELISA are reported as net optical density (OD) 1.0 (the difference in OD 1.0 between
pre-CHMI and preimmunization sera). (B, E) Antibodies to PfSPZ by alFA are reported as net AFU 2 x 10°, the reciprocal serum dilution at which the
fluorescent units were 2 x 10° (AFU 2 x 10°) in pre-CHMI minus preimmunization sera. (C, F) Results of inhibition of sporozoite invasion (ISl) assay are
reported as serum dilution at which there was 80% reduction of the number of PfSPZ that invaded a human hepatocyte line (HC-04) in the presence
of pre-CHMI as compared with preimmunization sera from the same subject. Panels A-C show groups 2 (five doses of 1.35 x 10° PfSPZ) and 3 (five
doses of 2.7 x 10° PfSPZ) before short-term CHMI (2 weeks after the last dose of PfSPZ or NS) and panels D-F show those volunteers in Groups 3
(five doses of 2.7 x 10° PfSPZ) and 4 (five doses of 2.7 x 10° PfSPZ) who underwent long-term CHMI (24 weeks after the last dose of PfSPZ). Panel G
shows net optical density (OD) 1.0 anti-PfCSP antibodies by an enzyme-linked immunosorbent assay (ELISA) comparing vaccinated Tanzanian
volunteers to volunteers in other trials receiving the same regimen. After five doses of 2.70 x 10° PfSPZ/dose, volunteers in bagamoyo sporozoite
vaccine 1 (BSPZV1) (N =25) had a 4.3-fold lower median net OD 1.0 than those in the U.S.-based clinical trial Walter Reed Army Institute of Research
(WRAIR) 2080 (N = 26) but a 6.6-fold higher median OD 1.0 than volunteers in 14-1-N010 in Bamako, Mali (N = 42), where malaria transmission rates
are higher. There was a significant difference between the results for WRAIR 2080 vs. BSPZV1 (P =0.0012), WRAIR 2080 vs. 14-1-N010 (P < 0.0001),
and even 14-1-N010 vs. BSPZV1 (P = 0.002) (two-tailed t-test). AFU = arbitrary fluorescence units; alFA = antibodies by immunofluorescence assay.
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FiGure 3.

responses between infected and uninfected volunteers in
Group 3 before CHMI #1 (P = 0.0499, Wilcoxon Rank-Sum
Test), but not PfCSP (P = 0.290) or for ISI (P = 0.249).

In sera collected before CHMI #3 (170-171 days after the
last vaccine dose), antibodies by the three assays for Group 4
and for the four volunteers in Group 3 uninfected in CHMI #1
who underwent CHMI #2 are in Figure 3D-F. All data appear in
Supplemental Table 12.

After the fifth dose, in the PfCSP ELISA, volunteers were
considered to have seroconverted if their net OD 1.0 and OD
1.0 ratio calculated, respectively, by subtracting or dividing by
the prevaccination antibody OD 1.0, were > 50 and > 3.0. By
these criteria, 15/18 volunteers (83%) in Group 2, 20/20
(100%) in Group 3, and 5/5 (100%) in Group 4 seroconverted,
median net OD 1.0 of positives of 1,189, 2,685, and 961, and
median OD 1.0 ratio of positives of 11.50, 21.15, and 37.83,
respectively (Supplemental Table 13). In the alFA, volunteers
with a net arbitrary fluorescence unit (AFU) 2 x 10° of > 150 and
a ratio of post- to pre-AFU 2 x 10° of > 3.0 were considered
positive (Supplemental Table 13). By these criteria, 17/18
volunteers (94%) in Group 2, 18/20 (90%) in Group 3, and 5/5
(100%) in Group 4 seroconverted, median net OD 1.0 of
positives of 2,844, 1,165, and 1,820, and median OD 1.0 ratio
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of positives of 1,193.00, 552.88, and 224.86, respectively
(Supplemental Table 13). For the IS, volunteers with a net ISI
activity of > 10% and a ratio of post- to pre-ISI activity of > 3.0
were considered positive. By these criteria, 3/18 volunteers
(17%) in Group 2, 8/20 (40%) in Group 3, and 3/5 (60%) in
Group 4 were positive, median net OD 1.0 of positives of
22.05, 38.92, and 12.44, and median OD 1.0 ratio of posi-
tivesof 19.79, 12.53, and 13.44, respectively (Supplemental
Table 13).

Other antigens. Two weeks after the fifth dose in Group 2
(1.35 x 10° PfSPZ) and groups 3 and 4 (2.7 x 10° PfSPZ), there
were antibodies to PfCSP in 15/18 and 25/25 subjects, re-
spectively. Ten of 25 volunteers immunized with 2.7 x 10°
PfSPZ made antibodies to Pf apical membrane antigen 1 and
4-16% responded to PfCelTOS, PfMSP5, PfMSP1, or Pf
erythrocyte binding antigen 175 (PfEBA175) (Supplemental
Table 14). The presence of antibodies, albeit at low incidence,
against proteins first expressed in late liver stages (PfMSP1
and PfEBA175) was unexpected; results were confirmed by
repeating the assays. No antibody responses were associated
with protection.

T-cell responses. T cells against liver-stage malaria para-
sites in mice and nonhuman primates immunized with
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radiation-attenuated SPZ mediate protection®?°" and it is

likely this is the case in humans.'> CD8 and CD4 T-cell re-
sponses generally peak after the first vaccination with PfSPZ
Vaccine.'® In this trial, T-cell responses were measured before
immunization, 2 weeks after the first and 2 weeks after the final
immunization in Group 2 (1.35 x 10° PfSPZ). For technical
reasons (loss of viability), the other groups could not be
studied.

After the first vaccination, the percent of Pf red blood cell
(PfRBC)-specific and PfSPZ-specific cytokine-producing
memory CD4 T-cell responses increased by 0.25 + 0.06
(mean + SEM) and 0.24 + 0.04, respectively (Figure 4A, B).
Throughout, “naive T cell” refers to cells that co-express
CCR7 and CD45RA, and “memory T cell” refers to all other
T cells. After the final vaccination, at week 22, the CD4 T-cell
responses were above prevaccine responses by 0.17 + 0.05
and 0.18 + 0.05% points, respectively. These responses were
lower than after the same immunization regimen in malaria-
naive U.S. adults.™®

PfRBC-specific CD8 T cells were not significantly above the
prevaccine levels, and PfSPZ-specific CD8 T cells were
slightly above background (Figure 4C, D); responses were
lower than in U.S. adults.''2

In contrast to other PfSPZ Vaccine trials,'® 127 there was
negligible change in the frequency of circulating yd T cells
(Figure 4E) or activation as measured by change in expression
of the activation markers HLA-DR and CD38 following immuni-
zation (Figure 4F). To identify potential explanations for lower
cellular immune responses in Tanzanians, we examined fre-
quency of T regulatory (Treg) cells (CD4Foxp3*CD25"CD127")
expressing the activation marker CD137 (also known as 4-1BB)*2
after stimulation with PfRBC. There was no difference in pre-
vaccine frequency of PfRBC-specific Tregs in the Tanzanians
as compared with Americans'® (Figure 4G). Consistent with CD4
and CD8 T-cell responses, PfRBC-specific Tregs were highest
after first immunization (Figure 4H). Last, the prevaccine fre-
quency of total memory T cells relative to total naive T cells was
significantly higher than in Americans (Figure 4l).

DISCUSSION

To our knowledge, this was the first assessment of the VE of a
malaria vaccine in Africa against CHMI. Plasmodium falciparum
SPZ Vaccine was well tolerated and safe but less immunogenic
and protective in Tanzanian men than in U.S. volunteers.

In our studies, all 18 controls became infected. Four of 20
(20%) recipients of five doses of 2.7 x 10° PfSPZ did not be-
come infected after homologous CHMI by DVI 3 weeks after
the last immunization. By contrast, 12/13 (92.3%) volunteers
in the United States who received five doses of 2.7 x 10°
PfSPZ were protected after homologous CHMI by mosquito
bite 3 weeks after the last vaccine dose."" When the four un-
infected Tanzanian volunteers underwent repeat homologous
CHMI at 24 weeks after the last dose, all four (100%) were
protected. In the United States, Seven of 10 previously pro-
tected volunteers were protected when they underwent ho-
mologous CHMI at 24 weeks'" and all five volunteers in the
United States who were protected at 21 weeks after the last
immunization (four doses of 2.7 x 10° PfSPZ) were protected
against repeat mosquito-administered CHMI at 59 weeks.'?
This could be due to boosting by the small numbers of PfSPZ
administered during the CHMI, or is more likely due to the fact

that in these protected individuals, the protective immune
responses induced by immunization were sustained.

The same exact immunization regimen was assessed for VE
against intense field transmission of heterogeneous Pfin Mali.
Vaccine efficacy against infection with Pf on TBS was 52% by
time to event and 29% by proportional analysis during
24 weeks after the last vaccine dose.' This was higher than
the VE by proportional analysis against homologous CHMI in
Tanzania. In Tanzania, there was a significant delay in the
onset of parasitemia after CHMI at 3 and 24 weeks in subjects
who received five doses of 2.7 x 10° PfSPZ and were not fully
protected (Figure 2B-D). Nonetheless, the proportional anal-
ysis suggests that homologous CHMI by DVI of a 100% in-
fectious dose of homologous PfSPZ Challenge is at least as
rigorous as a test of VE and potentially more rigorous than
intense field transmission of heterogeneous Pf.

Vaccine-induced antibody and T-cell responses in the
Tanzanians were lower than in malaria-naive Americans who
received the exact same dosage regimen. Two weeks after the
last dose, the median antibody responses to PfCSP, the major
protein on the surface of PfSPZ, were 4.3 times lower in the
Tanzanians than those in Americans (P = 0.0012, Student’s
t-test, 2-tailed),”" but significantly higher than in Malians who
received the same immunization regimen (P = 0.002)'*
(Figure 3G).

The T-cell responses were also lower than in Americans
(Figure 4), but this could only be assessed in PBMCs from
individuals who received the lower dose (five doses of 1.35 x
10° PfSPZ), not in the individuals who received the higherdose
(five doses of 2.7 x 10° PfSPZ), the group that had sustained
protection for 24 weeks. Thus, it is possible that had PBMCs
from the higher dose group been assessed, responses would
have been comparable to the responses in nonimmune
Americans. The Tanzanians who were assessed had a sig-
nificantly higher proportion of total memory T cells compared
with total naive T cells at the baseline than did the Americans.
This higher frequency of memory cells compared with naive
cells may explain the lower immunogenicity due to less
available naive cells for expansion during the vaccinations.
Moreover, the greater frequency of non-Pf-specific memory
T cells may compete for infected cell contacts during patho-
gen surveillance.®® These data suggest that PfSPZ Vaccine
immunogenicity may be dependent on cumulative history of Pf
exposure. Another explanation is that an activated immune
microenvironment in the Tanzanians as compared with the
Americans reduced immune responses.3* Helminth infections
have been associated with reduced immune responses to
malaria®®; however, the paucity of helminth infections in this
population does not support helminth infection as a cause of
the reduced immune responses.

There were no differences between vaccine and NS placebo
recipients in regard to vaccine tolerability or AEs; 97.1% of the
DVI administrations were rated painless and no volunteer
experienced any local AE. Systemic AEs, most commonly
headache, were mild, infrequent, and of short duration, with a
similar frequency in NS controls as in vaccinees (no statisti-
cally significant differences in rates).

Among the controls, 16 of 18 were positive for Pf by TBS after
CHMI. However, all 18 were positive by gPCR. This is consistent
with findings in Gabon after CHMI.?" It is likely that preexisting
asexual blood stage immunity limits Pf replication in some indi-
viduals. Thus, they never reach the threshold for detection by
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Ficure 4. Plasmodium falciparum Sporozoites (PfSPZ)-specific T-cell responses in vaccine recipients receiving 1.35 x 10° PfSPZ. (A-D) PfSPZ-
specific T-cell responses. Frequency of cytokine-producing memory CD4 T cells responding to (A) PfRBC or (B) PfSPZ. Throughout, “naive T cell”
refers to cells that co-express CCR7 and CD45RA, and “memory T cell” refers to all other T cells. Frequency of cytokine-producing memory CD8
T cells responding to (C) PfRBC or (D) PfSPZ. Results are the percentage of memory T cells producing interferon gamma, interleukin 2, and/or tumor
necrosis factor alpha following stimulation minus the percentage of cells following control stimulation. (E) Frequency of the V52" subfamily of yd
T cells of total lymphocytes. Results are expressed as fold-change from the prevaccine frequency. (F) yd T-cell activation in vivo. Data are the
percentage of memory yd T cells expressing HLA-DR and CD38 as measured on PBMCs following incubation with control stimulation (vaccine
diluent). (G) Prevaccine frequency of PfRBC-specific Tregs in Tanzania compared with malaria-naive U.S. subjects from the Vaccine Research
Center (VRC) 314 study. (H) Frequency of PfRBC-specific Treg. Results are the percentage of CD4"Foxp3*CD25*CD127~ T cells expressing CD137
(also known as 4-1BB) after stimulation with Pf red blood cell (PfRBC) minus the percentage of cells following stimulation with uninfected RBC. (l)
Percentage of total CD4 (left) or CD8 (right) T cells that are naive (gray bar; CCR7*CD45RA") or memory (blue bar; not CCR7*CD45RA*) phenotype
assessed prevaccination in all 48 subjects vaccinated in Tanzania or in 14 healthy U.S. subjects from the VRC 314 study.'® For A-F and H, N = 24,
and statistical difference was measured by using the Wilcoxon matched-pairs signed rank test. For G and I, statistical difference was measured by
using the Mann-Whitney U test. P values are reported as not significant (ns), < 0.05 (*), < 0.01 (**), or < 0.001 (***). Data are mean + SEM. Time points
are prevaccine, 2 weeks after the first vaccination, and 2 weeks after the final vaccination. Black arrowhead designates PfSPZ Vaccine adminis-
tration. This figure appears in color at www.ajtmh.org.
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TBS. In our CHMI studies in Bagamoyo, we now use qPCR to
confirm positive TBS, and retrospectively or in real time, assess
parasitemia in all volunteers by gPCR.

We propose that increasing the numbers of PfSPZ per dose
and altering intervals between doses will lead to overcoming
the downregulation of humoral and cell-mediated immunity
most likely because of previous exposure to Pf and thereby
increase immune responses to PfSPZ Vaccine and VE. We
also hypothesize that immune responses in younger, less
malaria-exposed individuals will be of greater magnitude than
those in adults.
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Abstract

Malaria continues to be one of mankind’s most devastating diseases despite the many and
varied efforts to combat it. Indispensable for malaria elimination and eventual eradication is
the development of effective vaccines. Controlled human malaria infection (CHMI) is an
invaluable tool for vaccine efficacy assessment and investigation of early immunological
and molecular responses against Plasmodium falciparum infection. Here, we investigated
gene expression changes following CHMI using RNA-Seq. Peripheral blood samples were
collected in Bagamoyo, Tanzania, from ten adults who were injected intradermally (ID) with
2.5x10* aseptic, purified, cryopreserved P. falciparum sporozoites (Sanaria® PfSPZ Chal-
lenge). A total of 2,758 genes were identified as differentially expressed following CHMI.
Transcriptional changes were most pronounced on day 5 after inoculation, during the clini-
cally silent liver phase. A secondary analysis, grouping the volunteers according to their pre-
patent period duration, identified 265 genes whose expression levels were linked to time of
blood stage parasitemia detection. Gene modules associated with these 265 genes were
linked to regulation of transcription, cell cycle, phosphatidylinositol signaling and erythrocyte
development. Our study showed that in malaria pre-exposed volunteers, parasite prepatent
period in each individual is linked to magnitude and timing of early gene expression changes
after ID CHMI.

PLOS ONE | https://doi.org/10.1371/journal.pone.0199392 June 19, 2018
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Introduction

Malaria caused by Plasmodium falciparum continues to be one of mankind’s most devastating
infectious diseases despite the many and varied efforts to combat it. It has been eliminated in
certain areas of the world by combination of treatment with effective drugs, e.g. chloroquine,
and by large scale vector control programs, e.g. through insecticide spraying and insecticide-
treated nets, only to resurge as a result of drug and insecticide resistance. In 2016, there was an
estimated number of 445,000 deaths related to malaria, the overwhelming majority (90%)
occurring in the WHO African Region [1].

An effective malaria vaccine would be a powerful tool for regional elimination and eventual
eradication of malaria. Currently the most advanced malaria vaccine candidate is RTS,S/AS01,
for which large-scale clinical evaluation in African countries has demonstrated vaccine efficacy
against clinical malaria of 34% during the 20 months following dose 1 in children aged 5-17
months [2]. Experimental vaccines comprised of live attenuated P. falciparum sporozoites
have gained increased attention because they are highly effective in providing sterile immu-
nity, i.e. immunity to infection [3-13]. Such vaccines primarily targeting the pre-erythrocytic
stage are safe because development of the parasite is arrested before, during or shortly after the
liver stage, hence prior to the blood stage during which malaria disease symptoms occur. Sev-
eral approaches aiming to determine the optimal design and administration mode of such a
vaccine are being pursued. Promising results have been obtained in studies using radiation-
attenuated sporozoites that were administered by either direct intravenous inoculation [3,5-8]
or mosquito bite [12,13], genetically attenuated sporozoites [10,11], or inoculation of volun-
teers with fully infectious sporozoites under coverage with an anti-malarial drug [4,9]. Besides
their application as potential anti-malaria vaccine candidates, aseptic, purified, cryopreserved,
whole infectious sporozoites are useful in controlled human malaria infection (CHMI) studies.
Targeted infection of volunteers in a controlled environment enables the clear and efficient
assessment of vaccine efficacy [14-16], aids the development of anti-malarial drugs [17], and is
useful for studying human immune responses to malaria infection [18]. The latter is of particu-
lar importance given that we still lack a detailed understanding of the host responses to early
stages of P. falciparum infection.

To overcome aforementioned gaps, high-throughput transcriptome analyses employing
microarray and/or RNA-Seq can be valuable. Both technologies have already been used for
gene expression profiling of malaria-naive subjects undergoing anti-malaria vaccination and/
or CHMI [19-24], malaria pre-exposed subjects undergoing natural P. falciparum infection
[21,22,25] and the Plasmodium parasite itself [25,26]. Collectively, such studies contribute to a
more comprehensive understanding of molecular patterns and cell signatures involved in the
interaction of the human host with malaria.

Here, we aimed to investigate human transcriptional dynamics during P. falciparum liver
and early asexual blood stage with data from a CHMI study conducted in Bagamoyo, Tanzania
in 2014, as described by Shekalage et al. [27]. We investigated the transcriptional responses by
RNA-Seq analysis of whole blood from 10 adults from malaria endemic regions following
CHMI by intradermal inoculation of PfSPZ Challenge, the first such CHMI ever carried out in
malaria pre-exposed adults. Our results add insights into gene pathways and associated molec-
ular functions elicited by the P. falciparum parasite in malaria-experienced subjects as well as
important findings regarding the interplay between differential expression magnitude and
malaria asexual parasite prepatent period at an individual level.
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Results
DE genes shared among subjects after CHMI

Limma linear modeling was applied to normalized and voom transformed sequence count
data to assess temporal gene expression level changes in response to infection with sporozoites.
Pairwise comparison of samples collected at baseline, day 5, day 9 and day 28 post CHMI,
allowed us to assess the direction and extent of expression changes at the different study visits
(Fig 1A). Setting the baseline transcriptional level as a comparator, a multitude of genes were
differentially expressed in the blood at day 5 (5/0) and day 28 (28/0) after CHMI. Remarkably,
gene expression levels recorded at day 9 post CHMI (9/0) did not differ significantly from the
baseline levels. However, extended pairwise comparative analyses revealed substantial num-
bers of DE genes on day 9 and day 28 relative to day 5 (9/5 and 28/5) and day 28 relative to day
9 (28/9). Most of the DE genes at day 5 (749) were expressed at lower levels in the blood rela-
tive to baseline with fewer genes (226) expressed at relatively higher levels. The opposite is true
at day 28, when more genes had higher (378) rather than lower levels of expression (88) rela-
tive to baseline. The greatest number of DE genes was observed at comparison 9/5 (1,536
genes up, 421 down). Similarly, albeit to a lesser extent, on day 28, 893 genes had increased
and 128 genes had decreased expression levels relative to day 5 and 209 genes had increased
and 97 had decreased expression levels relative to day 9. Not surprisingly, a significant number
of genes were differentially expressed in multiple comparisons. For example, there was a large
overlap between the DE genes determined for comparisons 5/0 and 9/5 (Fig 1B). Many of the
up-regulated DE genes at 5/0 were down-regulated at 9/5 (Fig 1C) and similarly, the majority
of down-regulated DE genes at 5/0 were up-regulated at 9/5 (Fig 1D). Combined, the six pair-
wise comparisons identified a total of 2,758 unique genes or 16.7% of the total 16,473 genes
contained in the data set that were differentially expressed. A list containing the DE genes and
their direction of change for each tested contrast is provided in the supplementary section of
this manuscript (S1 File).

GSEA detects DE trends across all genes

Gene set enrichment analysis (GSEA) generated a picture of progression of differential expres-
sion over 28 days following CHMI. This analysis incorporated all 16,473 genes in the dataset
and ranked the genes in terms of differential expression. GSEA accounts for subtle fold expres-
sion changes and simultaneous increased and decreased DE genes in a given gene module
[28]. This allowed us to also identify gene dynamics for the 9/0 contrast, despite the absence of
DE genes at > 1.5 fold expression changes for this comparison.

GSEA identified several blood transcriptome modules (BTMs) [29] whose expression levels
were decreased at comparison 5/0 (Fig 2). These were linked to modules for ubiquitination
(M138), transcription factors (M213), and inositol phosphate pathways (M101, M129) as well
as cell cycle and intracellular transport (M 143, M144, M147, M230, M237). Among BTMs that
appeared up-regulated for contrast 5/0 were modules linked to the CORO1A-DEF6 network
(M32.2, M32.4), platelet activation (M32.0, M32.1), regulation of localization (M63), signaling
events (M100, M215) as well as processes in translation (M245) and transcription (M32.3,
M234).

Interestingly, DE modules identified for contrasts 9/5 and 28/5 had a largely reciprocal pat-
tern of expression compared to contrast 5/0. Two BTMs with decreased relative expression at
contrast 9/5 that were not detected as DE at contrast 5/0 were associated with blood coagula-
tion (M11.1) and cytoskeletal remodeling (M32.8). The latter BTM was also down-regulated at
contrast 28/5. BTMs with no significant change at contrast 5/0 that appeared increased at both
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Fig 1. DE genes determined by limma pairwise visit comparison. DE was pronounced at a BH-adjusted p-value < 0.05 and >1.5 fold expression change. (a) DE genes
(red: up-regulated genes, blue: down-regulated genes) identified for each tested contrast are visualized as bars. The number of DE genes per contrast is indicated and
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regulated DE genes.

https://doi.org/10.1371/journal.pone.0199392.g001

contrasts 9/5 and 28/5 were linked to the proteasome (M226) and mitosis transcription factors
(M169).

Amongst other BTMs with higher expression levels at contrast 28/5 were modules linked to
erythrocyte differentiation and heme biosynthesis (M173, M171, M222). A similar trend in
increased expression of red blood cell (RBC) related BTMs was observed for contrasts 9/0, 28/
9 and 28/0 as well. Similarly, modules linked to the mitochondrial electron transport chain
(M216, M219, M231, M238) and translation and transcriptional processes (M234, M245) were
up-regulated with increasing magnitude at contrasts 9/0, 28/9 and 28/0.

Despite not having detected any DE genes for the 9/0 contrast in the first round of our anal-
ysis, GSEA revealed a variety of BTMs being differentially expressed at day 9 relative to base-
line. In addition to the aforementioned DE modules at contrast 9/0, BTMs linked to
ubiquitination (M138), cell cycle (M144), mitosis (M169) and most pronounced, to the protea-
some (M226) were identified as up-regulated compared to baseline. The down-regulated mod-
ules at 9/0 comparison largely corresponded to the negatively enriched BTMs of the 9/5 and
28/5 comparisons, with the exception of one module linked to cell junction (M4.13). Lastly,
contrast 28/9 showed, with exception to the already mentioned modules, DE patterns similar
to contrast 5/0. BTM:s linked to blood coagulation, cytoskeletal remodeling and cell junction
were found to be positively enriched exclusively for the 28/9 contrast.
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As a supporting analysis, we repeated the competitive GSEA, using gene sets designed by
Chaussabel et al. [30] that incorporate larger numbers of genes per set when compared to the
BTMs (S1 Fig). As an additional ancillary analysis, we applied hypergeometric gene set testing,
testing for overlaps between the DE genes and BTMs or Chaussabel defined sets (S2 and S3
Figs). For both analyses the identified sets were largely congruent with our initial results using
GSEA and BTMs. Additional Chaussabel sets detected were linked to the myeloid lineage and
monocyte development (down-regulated at 9/5). In addition, gene sets linked to CD4 cell divi-
sion and cell cycle (up-regulated at 9/5) and NK cell development and cytotoxicity (down-reg-
ulated 5/0) were seen.

DE gene dynamics and linkage to blood stage parasitemia

Examining the expression dynamics of the 2,758 DE genes determined in the first part of the
study, it became evident that the expression patterns varied not only between different visits
but also greatly between volunteers. These expression dynamics are visualized as heatmap in
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Fig 3, alongside a dendrogram grouping the DE genes in two major clusters. Ordering the
heatmap columns based on increasing individual prepatent period, indicated that the majority
of DE genes located in the larger cluster seemed to follow a distinct pattern regarding magni-
tude and direction of expression changes. Primarily at day 5, subjects with a short prepatent
period displayed an overall stronger down-regulation of DE genes than subjects with a moder-
ate or long prepatent period. The pronounced down-regulation of genes from the larger cluster
at day 28 in one of the subjects was most likely a technical artifact (RIN score of 5.2). This
might be a quality issue but nevertheless did not affect the statistical analyses conducted here.
We performed both limma linear modeling and competitive GSEA on a reduced set of sam-
ples, removing all four samples of two volunteers with the low RIN score samples. Not surpris-
ingly, the number of DE genes determined for the different contrasts were slightly changed,
with the ratio between up- and down-regulated DE genes remaining stable. Importantly, this
did not influence the GSEA outcome, with identical gene sets being identified as before when
analyzing the complete sample set.

Next, we grouped all subjects according to early (9, 9.5, 10), average (11, 11, 11, 11, 11.5, 12)
and late (16 days) appearance of blood stage parasitemia measured by qPCR (54 Fig). Using
limma, we performed an F-test to test for differences in temporal expression changes across
the three groups. This analysis identified a group of 265 genes linked to parasitemia (S2 File).

Hypergeometric testing revealed significant overlaps of the 265 DE genes with BTMs linked
to regulation of transcription factors (M179, M213), phosphatidylinositol signaling (M101),
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cell cycle (M144), intracellular transport (M147), ubiquitination (M138) as well as Chaussabel
gene sets linked to erythrocyte development (M2.3) and inflammatory processes (M138) (S2
File). Among these BTMs and Chaussabel gene sets, the magnitude of DE gene change was
most strongly affected by time to blood stage parasitemia for the 5/0 comparison (Figs 4 and
5). The three subjects (early group) that were within a time window of 4-5 days between day 5
blood collection and parasite detection displayed the strongest down-regulation of genes.
Time window differences of 6-7 days (average group; six subjects) or 11 days (one late subject)
between day 5 and blood stage parasitemia detection, respectively, correlated with reduced
changes to gene expression. Similarly, many genes of the erythrocyte development (M2.3) set
displayed increased expression levels in two of the three early subjects already at day 5. By day
9, all other subjects displayed uniform up-regulation of these genes, with the late subject show-
ing the least dynamics.

We assumed that the early and average groups with more robust sample sizes of 3 and 6 vol-
unteers were the main drivers for the here reported results and that the late group with only 1
volunteer had only a weak effect in the statistical model. In order to confirm this, we repeated
the limma linear modeling without the late parasitemia subject, comparing only early vs. aver-
age subjects. This analysis produced similar results as before, showing an even higher overall
number of DE genes (365). Subsequent hypergeometric testing produced the same significant
DE gene sets linked to parasitemia. Taken together, this confirms our reported results are not
driven by the single late subject but by comparison of the early and average volunteers.

Gene expression changes in relation to leukocyte population frequencies

In order to rule out that the observed transcriptional dynamics were driven by proportional
changes in major cell populations, we also integrated hematology data generated by Shekalage
etal. [27] into our analysis. We could indeed observe changes of the leukocyte populations in
our study population. This is in line with a recent study by Wolfswinkel et al. that reports
changes in total and differential leukocyte counts during the clinically silent liver phase in a
controlled human malaria infection in malaria-naive Dutch volunteers [31]. In our study, a
statistically significant increase of lymphocytes, neutrophils and monocytes was observed dur-
ing the early liver phase of the infection at day 5 (S5 Fig). The increase of neutrophils was even
more pronounced at day of parasitemia (e.g. time point of first positive microscopy thick
smear). In contrast, lymphocytes numbers were reduced at day of parasitemia. We integrated
these WBC dynamics with our limma linear model, investigating whether the magnitude of
increase in the leukocyte populations at day 5 correlated with the magnitude of gene expres-
sion changes at the same time point. We found no statistical evidence linking the magnitude of
cell change to the individual magnitude of gene expression change. WBC changes may cer-
tainly influence gene expression patterns but were not the driving force for the subject to sub-
ject differences in transcriptional dynamics reported in this study.

Discussion

We report here for the first time whole blood transcriptome changes over 28 days following
intradermal CHMI with aseptic, purified, cryopreserved, infectious PfSPZ in malaria-experi-
enced subjects. Transcriptional changes of hundreds of genes that had increased or decreased
relative to their expression levels between days 0 (day of infection), 5, 9 and 28 were identified.
Unlike comparable studies that investigated transcriptional responses following vaccination
and/or mosquito bite challenge [19-23] this study examined subjects who were infected by
intradermal injection with malaria parasites. It also focused on malaria experienced Tanzanian
adults who over the course of their life had been repeatedly exposed to Plasmodium parasites.
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Fig 4. Volunteer gene expression trends visualized as boxplots. Gene expression trends are shown for two differentially
expressed BTMs and one gene set linked to parasitemia. Boxplots with gene-wise baseline-subtracted expression values
are shown separately for subjects with early (red), average (green) and late (blue) detection of blood stage parasitemia.

https://doi.org/10.1371/journal.pone.0199392.g004
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Fig 5. Volunteer gene expression trends visualized as heatmaps. Gene expression trends are shown for two
differentially expressed BTMs and one gene set linked to parasitemia. Gene-wise expression levels of the Fig 4 DE
modules are visualized as heatmap. Column color bars indicate grouping of subjects into early (red), average (green)
and late (blue) group, based on time point of parasitemia detection. Each row corresponds to one gene.
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It has been shown that such individuals’ immunological responses to CHMI are different from
those of malaria-naive subjects. In Tanzanians, a stronger humoral immune response was
recalled after CHMI when compared to Dutch volunteers undergoing identical challenge con-
ditions [32]. Naturally acquired immunity in Kenyans strongly impacts on parasite multiplica-
tion rate observed after CHMI, calling for qPCR based molecular monitoring tools in addition
to blood slide microscopy for parasite detection [33].

Our study aimed to provide comprehensive insights into early host transcriptional
responses occurring during the pre-erythrocytic developmental stage. Since this stage is clini-
cally silent, it is only possible to be studied during a CHMI with parasite strain and infectious
doses defined. Therefore, we collected whole blood samples at days 0, 5 and 9 after intradermal
CHMI covering this under-researched, early infection period.

A surprising finding of our study was the modest transcriptional changes recorded at day 9
relative to baseline. Although several DE gene sets were later identified by GSEA for this con-
trast (Fig 2), the absolute expression level changes on gene level remained all below the DEG
threshold (1.5 fold change) and were therefore not picked up by the initial limma pairwise
analysis. This was unexpected since day 9 is the time point when parasite transition from the
liver to the blood occurs in the first volunteers. This finding supports the hypothesis that the
timing of whole blood collection as well as the inclusion of early time points (before day 9)
during the clinically silent liver stage needs to be targeted in order to optimally capture tran-
scriptional signals. Also noteworthy are the 400 DE genes identified at day 28 post CHMI rela-
tive to baseline (Fig 1A). These changes in expression levels cannot be attributed to the effect
of CHMI only. We assume that these changes are the combined result of infection and treat-
ment resulting in parasite clearance and development of cellular immune responses.

Importantly, our studies show that significant changes in transcriptional patterns are
already observed on day 5—a time point before parasites reach the blood. This is the time
period during which an unknown proportion of the injected PfSPZ have infected liver cells
and are rapidly developing into thousands of merozoites. High variation (ranging from day 9
to day 16) of parasite prepatent period measured by qPCR strongly indicates that the load of
parasites egressing from the liver varied between individuals. Ultimately, this first wave of
malaria parasites determines how rapidly asexual blood stage parasites amass to cross micros-
copy detection threshold (ranging from day 11.5 to day 19) resulting in anti-malaria treatment
[34]. The time between malaria infection and microscopic detection, e.g. the prepatent period,
has been shown to be associated with degree of malaria pre-exposure. Volunteers in the Tanza-
nian CHMI-ID trial, including the 10 subjects analyzed in our study, displayed significantly
longer prepatent periods than malaria-naive Dutch volunteers who underwent a similar
CHMI study [32]. Pre-existing immunity in the Tanzanian cohort was evident, with more
than 50% of the Tanzanian volunteers having a positive P. falciparum lysate serology at base-
line. Similarly, antibody titers for the P. falciparum antigens CSP, LSA-1, EXP-1, and AMA-1
or preexisting P. falciparum-specific IFN-y responses were reported. Importantly, none of
these markers for level of pre-existing immunity was associated with the observed differences
in prepatency, suggesting that other immunological parameters need to be assessed as well
[32].

Based on the prepatent period, we segregated our volunteers into three groups, namely
early (n = 3), average (n = 6) and late (n = 1). Interestingly, the length of the prepatent period
is reflected by the extent of observed transcriptional changes in peripheral blood. From the
time point of infection across all time points, we identified a total of 265 DE genes (S2 File)
whose expression level dynamics correlated statistically with time to parasitemia. The majority
of these genes were DE around day 5 (overlap with contrast 5/0 DE genes of 88 and 190 with
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DE genes of contrast 9/5). This was expected since a majority of DE genes and associated
BTM:s were identified already by the pairwise visit comparisons for the day 5 contrasts.

Notably, our observation of early gene expression changes is in line with a recent study by
Kazmin et al. who reported DE genes in response to mosquito bite challenge as early as day 1
and day 5 after infection [20]. Among differentially expressed gene modules correlating with
time to asexual blood stage parasitemia detection at contrast 5/0 were two BTMs linked to reg-
ulation of transcription and phosphatidylinositol signaling (Figs 4 and 5, S2 File). Genes con-
tained in these modules displayed in unison stronger down-regulation in volunteers with early
to average time to blood stage parasitemia. The trends observed in these BT Ms are representa-
tive of patterns seen in several other modules such as M5.1 (inflammation), M138 (enriched
for ubiquitination), M144 (cell cycle, ATP binding) and M147 (intracellular transport) and
M179 (enriched for TF motif PAX3). A similar, although reciprocal pattern was observed for
genes belonging to gene set M2.3, linked to erythrocyte development (Figs 4 and 5, bottom
panel). Genes of this set displayed increased expression levels in two of the three early subjects
already at day 5. By day 9, all other subjects displayed uniform up-regulation of these genes,
with the late subject showing the least dynamics.

Combined, our observations of individual 's prepatent period interlinked to the magnitude
of differential expression on day 5 strongly suggest that blood collection timing is critical and
should be conducted at more frequent intervals, additionally covering early time points
between days 1 to 4 post CHMI. Capturing time points with the highest transcriptional expres-
sion changes might depend on the size of the parasite load multiplying in the liver. Similar
studies involving malaria naive volunteers without pre-existing immunity and with more uni-
form prepatent periods would shed more light on this hypothesis.

Some of the BT Ms identified here as DE have been reported in similar studies that investi-
gated transcriptional responses following controlled infection with P. falciparum or vaccina-
tion. We can only draw limited conclusions when comparing our results with these studies,
given the differences in study participants (malaria-naive or vaccinated vs. pre-exposed sub-
jects), challenge model (mosquito bite vs. intradermal injection) and time point of gene
expression assessment. However, there are some interesting parallels to our results: The up-
regulation of genes in the proteasome module observed strongest at day 9 and significant at
day 28 post CHMI has been reported in response to candidate malaria vaccines TRAP and
RTS,S [19,23]. The proteasome is known to play a key function in MHC protein processing
and antigen presentation [23], the genes in this module could therefore be of special interest
regarding the development of adaptive immune responses against P. falciparum. The study by
Dunachie et al. [19] further reported the antigen processing and presentation pathway and
phosphotidylinositol signaling system to be key modules invoked by antigen stimulation after
vaccination and the latter to be correlated with time to parasitemia in subsequent challenge by
mosquito bite [19]. Interestingly, in our case of intradermal PfSPZ CHMI, we found this path-
way to be negatively correlated at day 5. The up-regulation of genes in the MAPK RAS signal-
ing module is an interesting parallel to a finding of Ockenhouse et al., who reported activation
of MAP kinases by natural acquired P. falciparum infection. The same study reported over
expression of genes linked to the GO term “protein ubiquitination”following mosquito bite
challenge of malaria-naive subjects. This is an interesting parallel to our BTM linked to ubiqui-
tination that was found up-regulated at 9/0 and down-regulated at 5/0 [21]. Cell cycle related
modules have been reported to be affected after RTS,S vaccination and homologous challenge.
Interestingly, the same study reported enrichment of genes in NK and monocyte pathways fol-
lowing vaccination and homologous challenge [20].

Studies in malaria mouse models have revealed that liver stage infection results in accumu-
lation of NKT and NK cells in liver tissue and that these cell subsets are involved in parasite
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protective immune responses [35]. In gene modules defined by the hypergeometric overlap
testing, we found that two gene modules (M7.2 and S1) associated with NK cell biology are
down-regulated on day 5. These data could indicate that in humans NK cell subsets are
recruited from peripheral blood into the liver during the pre-erythrocytic stage infection (S2
Fig).

It should be noted, that the classification of gene and/or module expression change in up-
or down-regulated as reported in our study, might not always be the best way of describing the
underlying biological or cellular dynamics. By using peripheral blood as starting material for
mRNA extraction, abundance or absence of certain transcripts could either reflect general
down-regulation of genes within cells or extravasation and recruitment of cells expressing the
respective transcripts to other body compartments. For the sake of interpretation it might
therefore be sensible to evaluate a module as changed/unchanged rather than focusing on
direction of change.

We acknowledge limitations to our study: First, we did not analyze transcriptional dynam-
ics in control subjects uninfected with sporozoites. This could be a minor concern since the
samples collected at day 0 served as individual baseline for each subject. Second, the sample
size of 10 volunteers limits the generalization of our findings. In our ongoing studies with Tan-
zanian volunteers undergoing intravenous vaccination and challenge with P. falciparum sporo-
zoites, we will be able to reconcile our observations in a second, independent cohort of similar
origin from Tanzania. This will include a more frequent sample collection and comparison of
protected vs. non-protected subjects.

Conclusion

This study demonstrates that the wide window of parasite prepatent periods in Tanzanian vol-
unteers, most likely due to different levels of pre-existing immunity or natural resistance, is of
importance in evaluating transcriptional responses to CHMI. We found that magnitude and
timing of early gene expression changes varied greatly among 10 study subjects, coinciding
with the individual’s parasite prepatent period. Since optimal sampling time points for each
individual are difficult to establish beforehand, we suggest including frequent sampling of
blood collections during early stages of infections to capture the short lived transcriptional
dynamics of cell populations circulating in the peripheral blood.

Material and methods
Ethics statement

All volunteers gave written informed consent before screening and being enrolled in the study.
The trial was performed in accordance with Good Clinical Practices, an Investigational New
Drug (IND) application filed with the U.S. Food and Drug Administration (US FDA) (IND
14267), and an Investigational Medical Product Dossier (IMPD) filed with the Tanzanian
Food and Drug Administration (TFDA). The protocol was approved by institutional review
boards (IRBs) of the Ifakara Health Institute (IHI/IRB/No025) and National Institute for Medi-
cal Research Tanzania (NIMR/HQ/R.8a/Vol.IX/1217), and the Ethikkommission beider Basel
(EKBB), Basel, Switzerland (EKBB 319/11). The protocol was also approved by TFDA

(Ref. No. CE.57/180/04A/50), and the trial was registered at ClinicalTrials.gov (registration ID:
NCT01540903, date of registration: 23/02/2012).
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Clinical trial design and sample collection

Details of volunteers enrolled and study procedure are given in Shekalaghe et al., 2014 [27].
The single center, double-blind, randomized, controlled trial was conducted in Bagamoyo,
Tanzania between February and August 2012. Briefly, 30 healthy male volunteers 20 to 35
years of age were recruited from institutions of higher learning in Dar es Salaam. Screening for
eligibility took place at the Clinical Trial Unit of the Ifakara Health Institute in Bagamoyo. Vol-
unteers were screened using predetermined inclusion and exclusion criteria based on clinical
examinations and laboratory tests. Tests included medical history and physical examinations,
standard hematology, biochemistry and test for malaria, human immunodeficiency virus, hep-
atitis B and C, and sickle cell disease. Volunteers were injected intradermally with 10,000
(N'=12) or 25,000 (N = 12) aseptic, purified, cryopreserved P. falciparum sporozoites or nor-
mal saline (N = 6). From day 5 after the controlled human malaria infection (CHMI), thick
blood smears were obtained regularly to detect blood parasitemia. Volunteers who became
microscopy smear positive, were treated with a standard 3-day regimen of arthemether/lume-
fantrine (Coartem). qPCR analysis for sensitive detection of blood stage parasitemia was car-
ried out retrospectively after volunteers had been diagnosed and treated. The CHMI proved to
be safe for all subjects, showing a high infectivity with 11/12 of the low dose and 10/11 of the
high dose subjects developing blood parasitemia [27]. Samples for RNA-Seq were collected
from the 10 subjects of the high dose (25,000 PfSPZ) group who developed blood stage parasi-
temia after CHMLI. 2.5 ml whole blood was collected into PAXgene tubes on days 0, 5, 9 and 28
of the study, transported to the Bagamoyo research and training centre (BRTC) laboratory and
stored at -80°C.

RNA isolation and sequencing

Poly(A)" RNA was prepared from whole blood in PAXgene Blood RNA tubes that had been
stored at -80°C. Following the manufacturer’s protocols, RNA was extracted using the PAX-
gene Blood Kit (PreAnalytiX) and quantified by spectrophotometry. A total of 1.2 pg of total
RNA per sample was processed using the GLOBINclear Human kit (Ambion) in order to
remove globin mRNA. The quantity and quality of the RNA was analyzed on a Bioanalyzer
Eukaryote Total RNA Nano chip. The average RNA Integrity Number (RIN) score across all
40 samples was 8. Two samples collected at day 28 post CHMI (6.4 and 5.2) were below the
recommended minimum RIN threshold of 7. RNAs of all samples were submitted for library
preparation and sequencing (Expression Analysis Inc., NC). Sequencing libraries were pre-
pared using the TruSeq Stranded mRNA Library Prep Kit (Illumina), 50 nt paired-end
sequence reads were obtained using an Illumina HiSeq 2000 platform and captured as raw
sequence data (FASTQ files). All samples were assessed for a sufficient total read count and
subsequently passed quality test using FASTQC.

Data processing and statistical analysis

The reads were aligned with STAR [36] against the UCSC hg38 human reference genome and
annotated with RSEM [37] (S6 and S7 Figs), applying the default parameters. Read libraries
were normalized with TMM (edgeR) [38] and transformed with voom (limma) [39,40]. Fol-
lowing common practice [41], a total of 5,530 genes exhibiting low counts (< 0.5 counts per
million) across all libraries were removed, ultimately leaving 16,473 unique genes in the data-
set. For the linear modeling of differential gene expression, we performed three analyses: (1) A
linear model with a moderated Bayesian variance estimator was applied to the comparisons
between time points. The correlation due to repeated measures across time points for the same
subjects was controlled by using subject as a blocking variable in the linear model. The analysis
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used as one group the 10 high dose subjects who developed blood stage parasitemia and identi-
fied the differentially expressed (DE) genes in response to CHMI across time. DE genes were
identified with comparisons between the pairwise time points of interest (day 5 vs. day 0 (5/0),
9/5, 9/0, 28/5, 28/9 and 28/0). (2) A secondary analysis was conducted where time to detected
asexual blood stage parasitemia was added as a categorical variable (early, average, late) along
with an interaction effect (~ parasitemia * day) to the limma linear model. DE genes were iden-
tified with an ANOV A-like comparison of all interaction effects using an F-statistics. The null
hypothesis being that all interaction effects are zero, and thus time of parasitemia does not
have any effect on gene expression changes over time. (3) To determine if leukocyte popula-
tion frequencies had an impact on differential gene expression, we added the cell counts
(reported in S5 Fig) as a continuous covariate along with an interaction effect to the limma lin-
ear model (~ day * cell_count). DE genes were identified as in the parasitemia model with an
ANOVA-like comparison. The linear modeling was carried out separately for each of the 4
investigated cell populations. For all three analyses, a statistical cutoff of the Benjamini-Hoch-
berg (BH) adjusted p-value less than 0.05 and a minimum 1.5 fold change was used to select
DE genes. After the linear modeling, competitive GSEA (camera) [42] was conducted with the
blood transcriptome modules (BTM) established by Li et al. [29]. Gene sets described by
Chaussabel et al. [30] were used in a confirmatory competitive GSEA analysis. Hypergeometric
gene testing (GeneOverlap R package) [43] was performed as an ancillary analysis to support
the camera competitive GSEA findings. Given two sets of gene lists (e.g. DE genes at different
contrasts and BTMs), this package calculates the overlaps between all pairs of lists from the
two sets. Fisher’s exact test is then used to determine the p-value and odds ratio in comparison
to a genomic background (the genome size) A statistical cutoff of the BH adjusted p-value less
than 0.05 was used for selecting significant modules.

Supporting information

S1 File. DE genes determined by limma pairwise visit comparison. logFC: estimate of the
log2-fold-change in gene expression corresponding to the tested contrast; AveExpr: average
log2 gene expression level over all visits; t: moderated t-statistic; P-value: raw p-value; adj. p-
value: adjusted p-value or q value; Trend: direction of gene expression change.

(XLSX)

S2 File. DE genes and gene sets linked to parasitemia. BTMs and gene sets sharing signifi-
cant overlap with 265 DE genes linked to parasite prepatent period, as determined by hyper-
geometric testing. FDR: false discovery rate; F: moderated F-statistics.

(XLSX)

S1 Fig. GSEA incorporating Chaussabel gene sets. Statistical significance is pronounced at a
p-value & FDR < 0.05. Red: up-regulated, blue: down-regulated.
(TIF)

S2 Fig. BTM hypergeometric testing. Blood transcriptome modules (BTM) sharing signifi-
cant overlap with DE genes as determined by hypergeometric overlap testing. Only significant
overlaps (BH adj. p-value < 0.05) are shown.

(TIF)

S3 Fig. Chaussabel hypergeometric testing. DE Chaussabel gene sets determined by hyper-
geometric gene set testing. Statistical significance is pronounced at a p-value & FDR < 0.05.
Each tile is labeled with the overlap size vs. overall module size.

(TIF)
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$4 Fig. Volunteer parasitemia data measured by qPCR. Development of asexual blood para-
sitemia in 10 volunteers as reported 2014 by Shekalaghe et al. [27]. (a) PMR: parasite multipli-
cation rate, determined applying a linear model as described by Douglas et al. [34]. (b)
Development of blood parasitemia visualized as line graph. Colored bars (a) and lines (b) indi-
cate grouping of volunteers into early (red), average (green) and late (blue) for RNA-Seq statis-
tical analysis.

(TIF)

S5 Fig. Changes of leukocyte population frequencies following CHMI. Boxplots are shown
for total leukocytes (a), lymphocytes (b), neutrophils (c) and monocytes (d). Individual volun-
teers are colored according to detection time point of blood stage parasitemia as early (red),
average (green) or late (blue). Bars with asterisk indicate statistically significant changes

p-

1, ***.
N :

between visits as determined by paired t-test (*: p-value < 0.05, **: p-value < 0.0
value < 0.0001).
(TIF)

S6 Fig. Read mapping information. Read mapping to UCSC hg38 reference genome using
STAR. Illumina sequencing yielded 58.56 to 82.54 million paired-end reads (mean 69.29 mil-
lion). STAR successfully mapped an average of 87.13% (63.4% - 94.1%) reads to the human ref-
erence genome. Among these reads, 13.25% (11.31-17.5%) mapped to multiple loci (light
green), with the remaining reads mapping to unique sequence stretches on the reference
genome (dark green). Unmapped reads were mostly too short (97.47%, salmon) indicating
impaired sequencing quality. A small fraction of unmapped reads (2.0%) were mapped to too
many loci or not mapped to the reference for other reasons (0.53%, red).

(TIF)

S7 Fig. Gene count information. Distribution of log2 gene counts after RSEM read quantifi-
cation. On average, 25.48 million counts were shared across 18,463 (17,513-18,877) gene sym-
bols per sample. Half of these genes exhibit between ~30 to ~1°000 counts. Each 25% of the
genes have counts below ~30 or above ~1’000 (up to 1.8 million counts per gene). Across all
samples, 22,003 unique genes were covered. Samples are ordered by study day of collection
(0,5,9,28) and grouped by subject. Outlier values (> Q3 + 1.5xIQR) are displayed as dots.
(TIF)
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ABSTRACT

In this study a ribosomal subunit protein (rsp) profiling based on matrix-assisted laser
desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS) was developed
for fast subtyping of Streptococcus agalactiae (Group B Streptococcus, GBS), a major cause
of neonatal sepsis and meningitis. A total of 796 GBS whole genome sequences, mirroring the
genetic diversity of the global GBS population, were used to identify molecular mass
variability of 28 rsp. We identified 62 unique rsp mass combinations, termed “rsp-profiles”
which can be distinguished by MALDI-TOF MS. The majority (>80%) of GBS sequenced
strains was found to display one of the six rsp-profiles 1-6. Importantly, these dominant rsp-
profiles classify GBS sequenced strains in high concordance with the core-genome based
phylogenetic clustering. Validation of our approach by MALDI-TOF MS analysis of 248 in-
house GBS isolates showed that the 28 rsp were detected reliably in the generated mass
spectra, allowing quick assignment of clinical isolates to rsp-profiles at high sensitivity (99%)
and specificity (97%). Our approach distinguishes the major phylogenic GBS genotypes,
identifies hyper-virulent strains, predicts probable capsular serotype and surface protein
variants and distinguishes between GBS genotypes of human and animal origin. In summary,
we propose an elegant method combining the advantages of the information depth generated
by WGS with the highly cost efficient, rapid and robust MALDI-TOF MS approach
facilitating high-throughput, inter-laboratory, large-scale GBS epidemiological and clinical

studies.

KEYWORDS

Group B Streptococcus, MALDI-TOF MS, ribosomal subunit protein, molecular
epidemiology
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SIGNIFICANCE STATEMENT

The World Health Organization has recently released a technology roadmap, listing priority
research activities pertaining to vaccine development against Group B Streptococcus (GBS), a
major cause of neonatal invasive disease and responsible for 150,000 stillbirths and infant
deaths every year. Large-scale and long-term GBS population monitoring has been proposed
to assess vaccine impact on distribution of capsular serotypes, strain replacement and the
emergence of escape strains from animal reservoirs. We present a ribosomal subunit protein
based MALDI-TOF MS scheme that allows such high-throughput GBS strain-level typing.
Our approach distinguishes the major phylogenic GBS genotypes, identifies hyper-virulent
strains, predicts the probable serotype and distinguishes between GBS genotypes of human

and animal origin.
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INTRODUCTION

Streptococcus agalactiae (Group B Streptococcus, GBS) is a Gram-positive bacterium known
to colonize the gastrointestinal and urogenital tract of around 18% of pregnant women
worldwide (1). In 2015, it has been estimated that GBS caused in 205,000 and 114,000 infants
early-onset (between day 0 and day 6 of age) and late-onset disease (between day 7 and day
89 of age), respectively. The reason for the emergence of GBS as an important human
pathogen has been attributed to the spread of pathogenic GBS clones (2) supported by the
widely use of tetracycline (3). This has led to few globally established, genetically
homogeneous human GBS lineages, which stand in contrast to obligate animal GBS strains,
which were not affected by the tetracycline induced evolutionary bottleneck and therefore

remain an under-researched reservoir of genetically highly diverse genotypes (4, 5).

GBS carry polysaccharide capsules which are thought to be main virulence factors interfering
with phagocytic clearance of the bacteria (6). Ten GBS serotypes (Ia, Ib, I, III, IV, V, VI,
VII, VIII, IX) have been described and are commonly used to classify GBS and to monitor
population dynamics (7). Distribution of serotypes differs globally and some serotypes are
associated with higher virulent GBS isolates. In particular, serotype III has been frequently
associated with infant early-onset and late-onset GBS disease and meningitis (8). Multi-locus
sequence typing (MLST) has also been widely used for GBS isolate discrimination and
revealed that the global population is dominated by only five major clonal complexes, namely

CCl, CC10, CC17, CC19 and CC23 (9).

Vaccination of pregnant women during the second and third trimester has been proposed as a
novel public health tool to prevent GBS disease in both mothers and children (10). Trivalent
glycoconjugate vaccines, covering serotypes la, Ib and III have completed phase I and II
clinical trials (11, 12) and a pentavalent vaccine including serotypes Ia, Ib, II, III and V is
under development (13). GBS protein based vaccines that target surface antigens (pili and
alpha-like proteins) are also under development although they will need to overcome
sequence variation of the targeted proteins (14, 15). Long-term effects of vaccine introduction
on circulating GBS population will need to be monitored to assess possible capsular switches,

capsular replacements or novel appearance of GBS strains (13, 16).
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Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF
MS) has become the gold standard for high-throughput microbial species identification in
clinical settings (17, 18). Currently commercially available and validated MALDI-TOF MS
test systems rely on detection of generic peptide patterns (peptide fingerprints), which
severely limits the discriminatory power for closely related species and separation of
subspecies and sub-lineages (19, 20). The conserved ribosomal subunit proteins (rsp) are
cytosolic proteins of high abundance and in the molecular weight range detectable by
commercial MALDI-TOF MS systems. Molecular weight variation of in silico predicted rsp
masses can be determined by MALDI-TOF MS, thereby providing a targeted, biomarker-
based approach of classifying mass spectra, which is superior to the conventional “pattern-
recognition” approach (21, 22). Here, we demonstrate that measuring the allelic mass
differences in 28 rsp of GBS by MALDI-TOF MS provides a highly cost efficient, rapid and
robust approach that facilitates high-throughput, large-scale GBS epidemiological and clinical

intervention studies.
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RESULTS

Capsular serotype and sequence type distribution in whole genome GBS sequences

collection

A total of 796 whole genome GBS sequences (WGS) was collated from public databases and
in-house sequenced isolates from human, camel, bovine and other animal origin. A listing of
the 796 GBS isolates and their corresponding metadata is provided in Supplementary Table
S1. Using in silico MLST, 108 sequence types (ST) were included and except for ST327, all
ST that are among the 28 most abundant in the global population were present in these 796
isolates (Supplementary Figure S2). In accordance with the PubMLST S. agalatiae isolate
database (23), the global repository of MLST based ST distribution, ST17, ST1, ST23 and
ST19 were the most frequent ST, accounting for 36% isolates in our collection (50% in
PubMLST). ST61 and ST554, which are less abundant on a global scale, were over-
represented in our collection (16% versus < 1% in PubMLST). All GBS capsular serotypes,
except serotype VII, were represented as follows: la: n = 126, Ib: n = 52, Il: n =211, Ill: n =
183, IV:n =80, V: n=111, VI: n = 9, VIII: n = 1, IX: n = 2, non-type-able: n = 2. In
summary, the 796 WGS collected constitute a global representation of the GBS population.

Genome-wide phylogenetic analysis of GBS collection

A core-genome phylogenetic analysis of the GBS WGS based on inclusion of 867 genes was
conducted using EDGAR (24). Sixteen GBS strains originating from Camelus dromedarius
were found distant from all other GBS genotypes (Figure 1a). Some strains isolated from fish,
frog and cattle formed distinct, host origin specific clusters. The other phylogenetic clusters
consisted predominantly of genotypes of human origin, with sporadic presence of animal
associated strains. An exception to this was one very heterogeneous but distinct phylogenetic
cluster, containing a range of genotypes of fish, bovine, human, rat and dog origin (Figure
la).

The core-genome based phylogenetic clustering was subsequently compared with the
classification by in silico MLST. One-hundred and eight ST were grouped into 15 clonal
complexes (CC) of closely related isolates (CC67, CC1, CC17, CC23, CC19, CC10, CC459,
CC452, CC7, €CC283, CCo15, CC609, CC103, CC4 and CC552) each CC consisting of a
founder ST and its single-locus variants (SLV). Remaining ST that were double-locus

variants (DLV) of founder ST were assigned to the corresponding CC and four ST (ST22,
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ST26, ST130 and ST616) that could not be attributed to a CC were defined as stand-alone ST.
There was a general high agreement between MLST classification of GBS isolates and the
core-genome phylogenetic clustering (Figure 1b). As expected, core-genome based
classification provides a resolution power that goes beyond CC or ST identity of an isolate,
thereby further sub-grouping genotypes that appear identical by MLST. In some cases, the
genetic variation of such sub-groups puts them into overall closer phylogenetic relationship
with genotypes of other CC origin. This was the case for CC23, CC452, CC10, CC7, CC283
and CC1, CC4 and CC459 (Figure 1b).

Comparison of the core-genome based phylogenetic clustering with in silico assigned
capsular serotypes confirmed that genotypes clustering closely together are likely to share the
same serotype (Figure 1c). Similarly, variant distribution of the five GBS surface proteins
(alpha-like protein (Alp) gene family, pilus islands, surface immunogenic protein (Sip),
laminin-binding protein (Lmb) and Group B Streptococcus immunogenic bacterial adhesin
(BibA) protein) investigated here was largely congruent with the core-genome phylogenetic
clustering (Supplementary Figure S3).

Average nucleotide identity (ANI) analysis, unlike core-genome analysis indexing sequence
variation across all genes contained in an organism, produced a grouping of the GBS strains
that was in high concordance to the core-genome phylogenetic analysis (Supplementary

Figure S4).

In silico prediction of ribosomal subunit protein molecular masses

WGS data of 29 GBS isolates that were also cultivated in house was used in silico to predict
molecular masses of all known 59 rsp. MALDI-TOF MS analysis conducted with these
isolates revealed that 28 out of 59 rsp were reproducibly measured in a molecular weight
range between 4,425 to 19,293 Da (Figure 2a). These experiments confirmed that our novel
sample preparation protocol enables us to identify the masses of 28 distinct rsp in total cell
lysates of GBS as exemplified in Figure 2b with five distinct isolates measured.

Next, the 796 WGS were used to predict the molecular masses of these 28 rsp including S8-
S10, S12, S13, S15-S19 and S21 of the small ribosomal subunit and L6, L13, L14, L17-L19,
L21-L24, 129, L30 and L32-L36 of the large ribosomal subunit. Three rsp (L14, L29 and
S15) did not show allelic mass variation across all 796 isolates. Four rsp (L22, L32, L33 and
S21) showed a variant mass in 1 out of 796 isolates. Eighteen rsp (L6, L17-L.19, L21, L.23,
L24, 130, L34, L36, S9, S10, S12, S13, S16-S19) showed low variability, with mass variants
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found in fewer than 8 out of 796 isolates. The most variable rsp were L.13, L35 and S8

displaying mass variation in > 100 out of 796 isolates (Figure 2c¢).

Definition of rsp profiles in our GBS collection

We next in silico predicted all possible combinations of these distinct 28 rsp masses in the
796 WGS. When taking into account the MALDI-TOF MS detection accuracy (400 ppm
threshold), we identified 62 unique and distinguishable combinations, which are referred to
onwards as rsp-profiles. Six dominant rsp-profiles (rsp-profiles 1-6), present in 83 to 134
GBS isolates covered 83% of the isolates (657/796). Five rsp-profiles (rsp-profiles 7-11) were
present in 5 to 42 GBS representing 9% (72/796) of isolates. Rsp-profiles 12-22 existed in 2
to 4 isolates (27/796, 3%) and the remaining 40 rsp-profiles named 23-62 were singletons
(40/796, 5%) (Supplementary Figure S5). These newly defined rsp-profiles classified the
GBS strains in high concordance with the core-genome based phylogenetic clustering. GBS
strains sharing an identical rsp-profile were located either next to each other or in the same
subordinate cluster in the core-genome based phylogenetic tree (Figure 3). The exception to
this were one rsp-profile 5 strain and two rsp-profile 4 strains that were grouped to strains
with different rsp-profiles as well as five ST103 strains with rsp-profile 4 that formed a
separate group in the core-genome analysis (Figure 3). All of these strains in fact displayed
novel rsp-profiles as predicted by the in silico analysis, but the molecular mass differences to
rsp-profile 4 and rsp-profile 5 respectively, were too small to be picked up by MALDI-TOF
MS, standing exemplary for the technical limitations of our current method. The genetically
distinct genotypes isolated from camels displayed a large variety of camel-specific rsp-
profiles (Figure 4, Supplementary Table S1). This occurrence of unique, animal-specific rsp-
profiles was also observed with ST260/ST552 isolates originating from frogs (» = 1) and fish
(n = 3). Similarly, strains of the bovine-specific CC67 also displayed specific rsp-profiles:
rsp-profile 1 for the majority (n = 134), but also less frequent rsp-profiles in some ST61 (n =
10), ST591 (n = 4) and ST622 (n = 2) isolates. Other GBS isolated from animal sources
displayed rsp-profiles shared with human-associated GBS genotypes (Figure 4).

Association of six dominant rsp-profiles with CC, serotype and surface antigens

We next investigated how GBS strains belonging to the six dominating rsp-profiles compared
with respect to the in silico predicted MLST based CC (Figure 5a), capsular genotype (Figure
5b) and pilus island variants (Figure 5c). Rsp-profile 1 (n = 134; 16.8%) contains only bovine
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originating CC67, is dominated by capsular serotype II (» = 122) and indicative for pilus
island PI-2b (n = 124). Rsp-profile 2 (n = 124; 15.6%) is dominated by CC17 (n = 101) and
its recombination derivative CC452 (n = 23) with the capsular serotype III (n = 99) and IV (n
= 25), and is indicative of pilus islands PI-1/PI-2b (n = 87) or PI-2b (n = 37). Rsp-profile 3 (n
= 111; 13.9%) is composed of members of CC1 (n = 110), and one strain of CC4 (n = 1),
while the capsular serotypes include predominantly serotype V (n = 80) as well as II (n = 17),
IV (n = 9) and non-typeable (n = 5). Rsp-profile 3 is linked to pilus islands PI-1/PI-2a (n =
94) and PI-2a (n = 17). Rsp-profile 4 (n = 109; 13.7%) is dominated by CC23 (n = 71) and its
recombination derivative CC452 (n = 11) with a larger fraction of non-dominating CC (n =
27), including ST22, ST26, ST130 CC103 and CC283. Capsular serotypes expressed in this
profile include Ia (n = 78), Il (n = 15), Il (n = 7), V (n = 8) and IX (n = 1). Pilus islands
covered by this profile are PI-2a (n = 96), PI-1/PI-2a (n = 9) and PI-2b (n = 4). Rsp-profile 5
(n = 96; 12.1%) is composed of members of CC10 (n = 62), CC7 (n = 27), CC283 (n = 6)
and CC23 (n = 1), with diverse serotypes la (n = 23), Ib (n = 41) and II-V (n = 30). Equally
diverse are the pilus islands, with PI1/PI-2a (n = 96) and PI1/PI-2b (n = 17) dominating. In
the rsp-profile 6 (n = 83; 10.4%), the majority of isolates belong to CC19 (n = 72) and some
to CC1 (n = 10) and CC4 (n = 1), with the capsular serotypes II (n = 17) and III (n = 51) and
pilus island PI-1/PI-2a (n = 73) dominating.

Validation of in silico established rsp-profiles by whole-cell lysate MALDI-TOF MS analysis
A total of 248 GBS isolates were analyzed in quadruplicates using MALDI-TOF MS,
resulting in 992 mass spectra. Most of the 28 rsp were detected consistently across all spectra
and some of these used for internal spectra calibration at 800 ppm. Twenty-five rsp were
detected in > 98% of all spectra acquired. L34 was found in 96%, L6 was detected in 91% and
rsp L33 1 was detected in 80% of spectra acquired.

For the 29 GBS isolates with whole genome sequences available, 14 distinct rsp-profiles
including the rsp-profiles 2-6, 11, 15, 18-22, 37 and 55 were predicted. Validation by
MALDI-TOF MS demonstrated 100% sensitivity of our approach, with all 29 GBS being
assigned an rsp-profile (Table 1a). All but one of the MALDI-TOF MS measured rsp-profiles
corresponded to in silico predicted rsp-profiles, giving a specificity of 97%. The one isolate
that was classified as rsp-profile 6, should display the unique rsp-profile 55 based on WGS
based prediction. Rsp-profile 55 differs only minimally (unique mass allele of rsp L.32) from
rsp-profile 6 and we cannot exclude the possibility that lack of sequence quality led to a false

in silico prediction of the mass allele in question.
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For the remaining 219 GBS isolates, rsp-profiles were assigned to 210/219 isolates. Spectra of
six isolates had to be manually updated for missing rsp but could subsequently be assigned to
an rsp-profile, producing an overall sensitivity of 99% (216/219 isolates assigned to an rsp-
profile). A total of 150 GBS isolates were assigned to the dominating rsp-profiles 2-6. Of the
GBS isolates originating from cows, five ST591 linked strains were assigned to rsp-profile 19
and one strain (SLV ST19) was assigned to rsp-profile 6. The 65 isolates of camelid origin
were assigned to seven different rsp-profiles that are, with exception of rsp-profile 22,
specific for camel genotypes. Three isolates could not be classified because they displayed an
rsp-profile not yet contained in our reference database that was based on the 796 WGS

(Supplementary Table S1).

Confirmation of inter-laboratory reproducibility of our method

MALDI-TOF MS typing of eight GBS isolates with available WGS in an independent
laboratory confirmed that our rsp-based typing method could be easily transferred to other
research sites and different MALDI-TOF MS systems. Bacterial sample processing following
our protocol and subsequent measurement on a Microflex MALDI-TOF MS system produced
high quality mass spectra, with all 28 rsp required for classification being detected. All eight
isolates were assigned to rsp-profile 5, one of the global dominant lineages. In silico rsp
evaluation of the 28 rsp molecular masses confirmed the correct identification for all eight

isolates (Table 1a).
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DISCUSSION

Current GBS typing methods based on MLST, pulsed-field gel electrophoresis (PFGE) or
capsular serotyping can provide insight into GBS population composition and dynamics.
However, several shortcomings limit the propensity of these tools for high-throughput
epidemiological analyses. All three methods are limited due to their time-consuming nature
and considerable per sample processing costs. Further, a significant proportion of non-
typeable strains cannot be identified by serotyping and PFGE results cannot be compared
across different laboratories. All three methods are also limited in inferring evolutionary
relationships between strains (25).

The rapidly increasing public availability of WGS data has supported the development of
commonly available computational analysis tools, allowing in-depth comparison of whole
bacterial genomes and thereby transforming our understanding of bacterial taxonomy (26).
Here, we used a collection of 796 WGS that were grouped according to their core-genome
and that — when compared to the conventional MLST based classification - confirmed the
global presence of the major CC including CC1, CC10, CC17, CC19, CC23 and CC67 (2).
The core-genome based phylogenetic analysis provided insight into the heterogeneity of
genotypes classified into the same CC (Figure 1b). Distinct clustering within each CC occurs
and in some cases these clusters share more similarity with members of other CC (as was the
case for CC23 and CC452 strains, CC10, CC7, CC283 and CCI strains as well as for CC4
and CC459 strains). This confirms the limitations of MLST based bacterial typing which is
based on the allelic differences in seven conserved house-keeping genes in understanding the

relatedness of GBS isolates (9).

MALDI-TOF MS has been previously applied to identify GBS hypervirulent ST17 and ST1
strains based on single biomarker masses of either unknown (27) or non-rsp identity (28). In
the here presented study, we aimed to develop a MALDI-TOF MS based GBS typing method
with increased robustness and a higher discriminatory power compared to previous
approaches. This novel method targets 28 known ribosomal loci, allowing us to
simultaneously detect molecular mass variation across a concatenated amino acid sequence of
~2,700 aa. We can thereby exploit subtle differences in an evolutionary highly conserved part
of the GBS genome for classification of closely related genotypes according to their core-

genome phylogeny.
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We found that for GBS, 28 rsp between 4,425 to 19,293 Da are reliably detectable in
MALDI-TOF mass spectra. This improved detection of individual rsp is fundamental to
unequivocally separate S. agalactiae strains and requires generation of high-level spectra
quality. To obtain this, we developed a refined preprocessing protocol for the bacterial cells
which - despite of being more sophisticated than standard approaches like direct smear or
formic acid extraction - still allows high-throughput analysis of GBS samples at low costs. A
single analysis of an isolate takes less than an hour to perform and can easily be up-scaled,
allowing typing of 40-60 isolates per day. Per sample costs of less than 6 USD renders our
approach highly competitive to currently employed typing and GBS identification methods.
Our newly developed bioinformatics analysis pipeline requires minimal bioinformatics
knowledge and hands on time by the routine user. We identified six dominant rsp-profiles in
the global GBS population, which can be distinguished with high specificity by MALDI-TOF
MS and that classify GBS genotypes in high concordance to their corresponding core-genome
phylogeny (Figure 3). Matching of these six rsp-profiles against 115,768 MALDI-TOF MS
spectra from routine diagnostics, covering 3,013 bacterial species, revealed that the highest
matching species following GBS was Streptococcus pyogenes with only 15/28 rsp having a
similar size measurement like GBS, which demonstrates our methods high GBS-specificity
and robustness for false positive assignment. One limitation of our method is the fact that only
strains with rsp-profiles already existing in the reference database can be classified (as
exemplified by the three in-house isolates with no assigned ID). This is a minor concern,
given that the majority of circulating strains will display one of the already described
dominant rsp-profiles. In the case of atypical GBS genotypes with an unknown rsp-profile,
our method serves as a first-line screening tool. Strains flagged by our method can in a next
step be subjected to whole genome sequencing and the in silico extracted rsp-profile
subsequently be incorporated into our reference database for future direct identification of
such novel genotypes. Further limitations of our approach rest with the technical capacity of
MALDI-TOF MS to detect and discriminate rsp masses. Minimal molecular weight
differences of less than 400 ppm are below the detection threshold of the standard MALDI-
TOF MS systems. This can lead to failure in distinguishing certain rsp-profiles and therefore,
false assignment of an rsp-profile. In our collection of 796 GBS strains we only observed
eight isolates for which this was the case. Future advance of the MALDI-TOF MS
technology, improving both accuracy and overall covered mass range, will help in

overcoming these current limitations.

73



We propose several possible applications for the novel MALDI-TOF MS based rsp-typing: (i)
Identification of GBS with rsp-profile 2 that is found to be specific for the known hyper
virulent CC17 lineage and its clone ST452, which emerged from recombination between
CC23 and CC17 isolates (29), could be of specific interest in clinical routine diagnostics.
Rapid identification of known hyper-virulent GBS strains in pregnant women could help in
the decision-making regarding the necessity of intrapartum antibiotic prophylaxis. (i) Distinct
rsp-profiles allow the prediction of probable serotype and surface protein variants, all of
which are major determinants of GBS virulence (Figure 5 and Supplementary S3). The
predictive value thereby varies between the different rsp-profiles, with some showing strong
others less correlation. For example, rsp-profile 1 is highly indicative of serotype II and rsp-
profile 2 is almost exclusively found in strains with serotype III, while rsp-profile 5 is present
in strains of serotypes Ia, Ib, II, III, IV and V (Figure 5b). (iii) Tracking of GBS zoonotic
events is easily possible since rsp-profiles of isolates of animal origin differ distinctly from
human isolates. For example, rsp-profiles 1, 10, 12, 17, 19, 38, 39, 59, 60 and 61 are confined
to bovine origin, rsp-profile 49 is unique for fish origin, rsp-profile 13 is indicative of either
fish or frog origin and rsp-profiles 11, 15, 18, 20, 21 and 37 are unique to cameloid origin
(Figure 4). (iv) Lastly, the here presented method would allow for large-scale monitoring of
GBS vaccination impact. Currently, a trivalent CPS vaccine is most advanced in clinical
development, incorporating serotypes la, Ib and III (10, 11, 30). These serotypes, although the
most pathogenic, represent only a fraction of the GBS global population. The potential
implications of a vaccine targeting only selected genotypes can be exemplified by the lessons
learned from the multi-valent pneumococcal vaccine. After its introduction in Europe and
North America, vaccine-type serotypes and associated invasive pneumococcal disease
decreased rapidly. However, non-vaccine-type serotypes and linked disease increased in the
years following vaccine introduction, indicating the importance of continued population
surveillance in order to track serotype replacement (31-33). Therefore, for testing and long
term follow up of the impact of maternal GBS vaccination, it will be essential to understand
how the global GBS population responds to vaccine induced immune selection. Particularly, it
would be interesting to understand if some of the ancient GBS lineages that carry serotypes
included into the vaccine vanish, if vaccine escape strains carrying non-vaccine serotypes
emerge as newly dominating lineages and if GBS with zoonotic potential fill the vaccination

induced biological niches.
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CONCLUSION

We present here a ribosomal subunit protein based MALDI-TOF MS typing method. Due to
the evolutionary conservation and high expression level of rsp, the discriminatory power of
this method allows classification of GBS isolates according to their core-genome phylogeny
within minutes and with minimal bioinformatics knowledge and hands on time required. In
summary, our approach is rapidly extendable by (i) including rsp-profiles or (ii) other
biomarker masses from any novel GBS isolate emerging, (ii) robust against inter-
laboratory/platform variation of mass spectra quality, (iii) streamlined for easy application by
minimally trained users, (iv) suitable for high-throughput, large scale GBS epidemiological
and clinical studies and (v) highly cost efficient with per sample analysis costs of less than 6
USD and results obtained within minutes. We propose an elegant way combining the
advantages of the information depth generated by WGS with the highly cost efficient, rapid
and robust MALDI-TOF MS approach for high-throughput, biomarker-based GBS

microbiological research.
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Figure 1. FastTree phylogenetic tree based on core-genome analysis of 796 Group B Streptococcus whole
genome sequences. Individual strains are annotated with (a) host origin, (b) in silico predicted multi-locus
sequence typing clonal complex (CC) or sequence type (ST) and (c) in silico predicted capsular serotype. (Scale

bar: nucleotide substitutions per site).
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Figure 2. (a) A representative MALDI-TOF mass spectrum of a Streptococcus agalactiae ST7 strain, covering
the mass range between 4,000 - 22,000 Da. The arbitrary intensity values of the mass peaks are given on the y-
axis. Dashed lines indicate the position of the 28 ribosomal subunit proteins (rsp) targeted in our analyses. (b)
Assessment of mass spectra belonging to five Group B Streptococcus (GBS) isolates confirm in silico predicted
mass shifts in three rsp (L35, L13 and S8). Green: Major rsp mass, yellow & orange: rsp mass variants. (c) In
silico predicted molecular mass variation of 28 rsp across 796 GBS whole genome sequences. Ribosomal
subunits proteins are ordered from left to right by increasing molecular weight. Green: Most abundant rsp mass

allele; yellow, orange and blue: 2™, 3™ and 4™ most abundant rsp mass allele; Red: remaining rsp mass alleles.
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Figure 3. FastTree phylogenetic tree based on core-genome analysis of 796 Group B Streptococcus whole
genome sequences (WGS). Individual strains are annotated with their in silico determined ribosomal subunit
proteins (rsp)-profile. For simplicity, only the six globally dominant rsp-profiles are shown (covering 83% of
isolates in our WGS collection). Marked with asterisks are eight strains whose rsp-profile was miss-assigned due

to limitation of MALDI-TOF MS resolution (i.e. 400 ppm). (Scale bar: nucleotide substitutions per site).
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Tree scale: 0.001

Figure 4. FastTree phylogenetic tree based on core-genome analysis of 796 Group B Streptococcus (GBS)
whole genome sequences. Individual GBS strains are annotated with ribosomal subunit proteins (rsp)-profiles,
which are distinct for GBS genotypes of obligate animal origin. Red: rsp-profiles 1, 10, 12, 17, 19, 38, 39, 59, 60
and 61 are exclusively found in bovine isolates. Blue: rsp-profile 49 is unique for fish origin. Rose: rsp-profile
13 is indicative of either fish or frog origin. Khaki: rsp-profiles 11, 15, 18, 20, 21 and 37 are exclusively found in

camel isolates. (Scale bar: nucleotide substitutions per site).
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Figure 5. The global major ribosomal subunit proteins (rsp)-profiles 1-6 provide a probabilistic value regarding
the Group B Streptococcus genotypes’ associated (a) multi locus sequence typing clonal complex (CC), (b)

capsular serotype and (c) pilus variants. nt: non-typeable.
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Table 1. Validation of the established ribosomal subunit protein (rsp) typing scheme with MALDI-TOF MS
measurements of in-house group B Streptococcus (GBS) isolates.

a) MALDI-TOF MS measurements of 37 isolates with available whole genome sequence (WGS) data.

b)

n isolates

OO0 m— = = = NN NN W WK — W= = W

*

source

Human
Human
Human
Human
Human
Camel
Camel
Camel
Bovine
Camel
Camel
Camel
Human
Camel
Human
Fish

MALDI assigned rsp-profile

rsp-profile 2
rsp-profile 3
rsp-profile 4
rsp-profile 5
rsp-profile 6
rsp-profile 11
rsp-profile 15
rsp-profile 18
rsp-profile 19
rsp-profile 20
rsp-profile 21
rsp-profile 22
rsp-profile 22
rsp-profile 37
rsp-profile 6
rsp-profile 5

37/37 assigned (100% sensitivity)

in silico assigned rsp-profile

rsp-profile 2
rsp-profile 3
rsp-profile 4
rsp-profile 5
rsp-profile 6
rsp-profile 11
rsp-profile 15
rsp-profile 18
rsp-profile 19
rsp-profile 20
rsp-profile 21
rsp-profile 22
rsp-profile 22
rsp-profile 37
rsp-profile 55
rsp-profile 5

n correctly assigned

O = = = NN WL = W= =W

o0

specificity: 97% (36/37)

* isolates typed in an external laboratory on a different MALDI-TOF MS system

MALDI-TOF MS measurements of 219 isolates without WGS available.

n assigned

33
16
49
22
30
1
22
20
17
2
2

1

1
0 (3)**

source

Human
Human
Human
Human
Human
Human
Camel
Camel
Camel
Bovine
Camel
Camel
Camel
Human

MALDI assigned rsp-profile

rsp-profile 2
rsp-profile 3
rsp-profile 4
rsp-profile 5
rsp-profile 6
rsp-profile 7
rsp-profile 11
rsp-profile 15
rsp-profile 18
rsp-profile 19
rsp-profile 20
rsp-profile 21
rsp-profile 37
new profile

216/219 assigned (99% sensitivity)

** three isolates displayed novel rsp-profiles not yet contained in our reference database
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MATERIAL AND METHODS

GBS WGS accession and metadata

A total of 876 WGS were obtained on 24-07-2017 from the National Center for
Biotechnology Information (NCBI) genome database. Since sequence quality did not allow
prediction of all 28 rsp molecular masses 98 WGS were removed from the dataset. Together
with 18 in-house sequenced isolates, the final dataset consisted of 796 WGS. The dataset
contained data from GBS genotypes isolated over a long time span, with collection time
points dating from 1934 to 2016. The strains stem from various geographic regions in Africa,
the Americas, Asia, Australia and Europe. The majority of the strains were isolated from
human (n = 543) or cattle (n = 187), with the remaining genotypes isolated from fish (n =
25), camel (n = 16), rat (n = 7), seal (n = 5), dog (n = 4), frog (n = 2), dolphin (n = 1), or
unknown origin (n = 6). Of the strains for which information of the host health was available,
449 were reported to be associated with disease, while 277 occurred as non-disease-causing

colonizer. Comprehensive metadata of all WGS is provided in Supplementary Table S1.

GBS whole-genome sequencing

Genomic DNA was extracted using the QIAamp DSP DNA minikit (Qiagen, Hilden,
Germany). A first batch of three isolates was processed as described in Rothen et al. (34). For
a second batch of 15 isolates, paired-end libraries constructed by the Nextera XT DNA library
prep kit (Illumina, San Diego, CA) were sequenced on a MiSeq system (Illumina) using a
600-cycle MiSeq reagent kit v3 (Illumina). De novo assemblies were created using SeqMan
NGen from the Lasergene genomics package version 12.1.0 (DNAStar, Madison, WI) with
standard settings. Comprehensive WGS information including accession numbers are

provided in Supplementary Table S1.

Core-genome phylogenetic analysis

Automatic genome annotation of the WGS was performed with the Prokka software tool
version 1.12 (35), using a Streptococcus genus database. The core-genome phylogenetic
relationships of the WGS were obtained using EDGAR version 2.2 (24). Detailed information

on the core-genome analysis is provided as Supplementary text.
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In silico capsular serotyping, MLST and ANI analysis

In silico capsular typing was performed as described by Sheppard et al. (36) and MLST using
a custom R script, accessing the query references of the seven housekeeping genes from the
PubMLST database (https://pubmlst.org/). Average Nucleotide Identity (ANI) analysis was
carried out using the Python module PYANI (https://github.com/widdowquinn/pyani),
applying the ANIm method. ANI calculations were performed at sciCORE

(http://scicore.unibas.ch/) scientific computing core facility at University of Basel.

In silico typing of GBS surface protein variants

tBLASTn analyses were carried out for an in silico variant typing of five major GBS surface
proteins. For variant typing of the laminin-binding protein (Lmb) and the surface
immunogenic protein (Sip), one query sequence was used for BLAST and the identified
protein variants assigned an allele number in decreasing order of frequency. Variant-specific
protein sequences published by Creti et al. (37) were used as query files for the alpha-like
protein (Alp) gene family. For the surface protein gbs2018 (BibA), variant-specific query
sequences described by Springman et al. (38) were used. Distribution of pilus islands (PIs)
types among the WGS was determined using representative sequences of the three described
variants PI-1, PI-2a and PI-2b (39). A summary of the protein used as queries, their respective
sequence accession numbers and the thresholds used to retain BLAST hits is provided as

Supplementary Table S7.

In silico molecular weight prediction of ribosomal subunit proteins

The theoretical monoisotopic molecular weights of ribosomal subunit proteins were predicted
using an in-house Python bioinformatic pipeline. Post-translational modifications, specifically
N-terminal methionine loss and methylation, were taken into account. tBLASTn analyses
were carried out for an in silico typing of the rsp in 796 GBS WGS. Based on the predicted 28
rsp masses in our collection, we assessed the variability of each mass (mass alleles) and
defined unique combinations of mass alleles (rsp-profiles) across the WGS, taking into

account the MALDI-TOF MS detection threshold of 400 ppm.
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GBS isolates used for MALDI-TOF MS analyses

The 248 GBS isolates used in this study were obtained from four different sources: (i) 156
human isolates belonging to a set of S. agalactiae strains described by Huber et al. in 2011
(40). These both inpatient and outpatient samples were obtained and cultivated at the Aga
Khan University Hospital in Nairobi, Kenya between January 2007 and June 2010; (ii) 79
samples from the International Livestock Research Institute (ILRI) isolated from camels in
Kenya and Somalia (4, 34, 41); (iii) Six GBS samples from cattle, isolated during 2009 in
Switzerland by Prof. J. Frey from the University of Bern (unpublished); (iv) Seven human
GBS reference strains were provided by Dr. H. Tettelin from the University of Maryland (26).
More comprehensive information of all analyzed GBS isolates is provided in Supplementary

Table Sé.

Bacteria cultivation and sample preparation

GBS bacteria were stored at -80 °C and transferred to blood agar for overnight growth prior to
MALDI-TOF MS measurements. The pre-processing of the GBS bacterial samples followed a
protocol established in this study. Briefly, a standardized amount of bacterial cells was first
subjected to several washing steps and subsequently mechanically ruptured by bead beating.
The bacterial protein cocktail was then transferred to an ultrafiltration column (Amicon®,
Sigma-Aldrich), for removal of molecules with a molecular mass below 3,000 Da. The final
protein solution was spotted in quadruplicates on a steel MALDI-TOF target plate and
overlaid with 1 pl sinapic acid matrix solution. The detailed pre-processing protocol is

provided as Supplementary text.

MALDI-TOF MS analyses

The MS measurements were carried out using a MALDI-TOF Mass Spectrometer Axima
Confidence machine (Shimadzu-Biotech, Kyoto, Japan). Detailed information on instrument
setup, mass spectra processing and internal calibration is provided as Supplementary text. An
ascii file containing the recalibrated protein mass values and corresponding intensities was

automatically generated for every GBS isolate.
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Classification of mass spectra

The mass lists were classified using a custom Python script. Briefly, all mass list entries were
queried against the in silico predicted mass alleles of 28 rsp and the thereby generated
sequence of mass alleles matched against the reference library containing the 62 defined rsp-
profiles. A mass list was assigned an rsp-profile identification (ID) if (i) there was one single
top matching reference and (ii) if at least 24 rsp masses could be detected. An isolate was
assigned a final rsp-profile ID if (i) at least two of the four technical replicate mass lists were
assigned the same rsp-profile and (ii) if there was no contradicting match with a different rsp-
profile in the other technical replicate mass lists. If a specific rsp was missing in all mass lists
considered for the final ID of an isolate, a warning message was generated, indicating the

possibility of a new rsp-profile not yet contained in the database.

Confirmation of inter-laboratory reproducibility of our method

In order to confirm the inter-site transferability and reproducibility of our method, additional
MALDI-TOF MS analyses were performed in an independent laboratory. Eight GBS isolates
were cultivated and pre-processed following our established protocol. The MALDI-TOF
measurements were carried out on a Microflex machine (Bruker Daltonics, Bremen,
Germany), with the instrument parameter settings adjusted for the use of sinapinic acid.
Spectra post-processing, internal calibration, rsp prediction and classification was carried out
in an automated way using our custom R and python scripts as described above. WGS data of
the eight GBS isolates were available and used in silico to confirm the molecular masses of

the 28 rsp.
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ABSTRACT We present draft whole-genome sequences of seven Streptococcus aga-
lactiae strains isolated from Camelus dromedarius in Kenya and Somalia. These data -
. A . 2017 Published 13 July 2017
are an extension to the group B Streptococcus (GBS) pangenome and might provide Citation Rothen J. Schindler T, Pothier JF,
more insight into the underlying mechanisms of pathogenicity and antibiotic resis- Younan M, Certa U, Daubenberger C, Pfliiger V,

tance of camel GBS. Jores J. 2017. Draft genome sequences of
seven Streptococcus agalactiae strains isolated
from Camelus dromedarius at the Horn of

h t | loni fh trointestinal d it . tracts Strept _ Africa. Genome Announc 5:00525-17. https://
€ natural colonizer of numan gastrointestinal ana genitourinary tracts >treptococ doi.org/10.1128/genomeA.00525-17.

cus agalactiae, also known as Lancefield’s group B Streptococcus (GBS), is an Copyright © 2017 Rothen et al. This is an
emerging pathogen of serious clinical concern (1). As a main causative agent of open-access article distributed under the terms
meningitis, sepsis, and respiratory diseases in neonates, GBS is strongly linked to child ‘Omftter::acﬁrsig‘vﬁfei?gomAm"bur‘o” 40
mortality and morbidity (2). S. agalactiae has also been isolated from both healthy and Address correspondence to Julian Rothen,
diseased camels in countries from the Horn of Africa (3-7). Given the fundamental role julian.rothen@unibas.ch.
of camels for human nutrition and financial safety in these regions, GBS-associated
diseases, such as mastitis or udder abscesses resulting in significant losses in milk
production, can have a devastating impact (5). Here, we report the whole-genome
sequences of seven GBS strains, isolated from Kenyan and Somalian camels (Camelus
dromedarius). Previous genomic analysis of these isolates by multilocus sequence
typing (MLST) indicated a detached phylogenetic relationship compared to GBS strains
of human or bovine origin (5). The three isolates ILRI025, ILRIO30, and ILRI067 were
isolated from healthy camels, while ILRI037 (causing gingivitis), ILRI054 (causing wound
infection), ILRI120 (causing chronic cough), and ILRI127 (causing periarthricular abscess)
were associated with disease.

Genomic DNA was extracted from a single bacterial colony cultivated on Columbia
sheep blood agar using the QlAamp DSP DNA minikit (Qiagen, Hilden, Germany). DNA
was fragmented by ultrasonication using the Covaris S2 instrument (Covaris, Inc.,
Woburn, MA, USA). Barcoded libraries were generated with the lon fragment library kit
and lon Xpress DNA barcode adaptors (Life Technologies, Inc., Carlsbad, CA, USA).
Sequencing was performed on an lon Torrent Personal Genome Machine (PGM) system,
with the lon PGM sequencing 400 kit and the lon 318 Chip version 2 (Life Technologies,
Inc.). After sequencing, single processing and base calling were performed using
Torrent Suite 3.6 (Life Technologies, Inc.), and barcode-separated FASTQ files were
generated. For de novo assemblies, we used MIRA version 4.0 (8). Contigs were sorted
along the already published (9) GBS genomes of ILRI112 (accession no. HF952106) and
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TABLE 1 List of Streptococcus agalactiae draft whole genomes released to GenBank

1,876
1,883
1,895
1,867
1,812
1,954

Strain GenBank accession no. Multilocus ST? Serotype Genome size (bp) No. of proteins
ILRI025 NDGG00000000 610 VI 2,013,384
ILRIO30 NDGF00000000 617 Vi 1,999,626
ILRI037 NDGE00000000 612 la 2,020,002
ILRI054 NDGDO00000000 615 I 2,021,031
ILRIO67 NDGC00000000 614 \ 1,980,469
ILRIT20 NDGB00000000 618 la 2,049,911
ILRI127 NDGA00000000 613 la 1,973,342

1,875

aST, sequence type.

ILRIOO5 (accession no. HF952105) (only for isolate ILRIO67) using the Move Contigs
function in Mauve version 2.3.1 (10). SegMan Pro from the Lasergene genomics
package version 12.1.0 (DNAStar, Madison, WI) was used to check and manually close
gaps between contigs. Genome annotation was added using the NCBI Prokaryotic
Genome Annotation Pipeline (PGAP). The seven genomes displayed an overall size
between 1,973,342 and 2,049,911 bp, with 1,812 to 1,954 proteins detected (Table 1).

The draft genome sequences of cameloid GBS isolates presented here are a valuable

addition to the pangenome of S. agalactiae (11). These genomic data provide a basis for
the investigation of adaptive factors in GBS host colonization as well as underlying
mechanisms of antibiotic resistance development and pathogenicity of camel S. aga-
lactiae.

Accession number(s). The annotated draft whole-genome sequences of the seven

S. agalactiae isolates were deposited in GenBank under BioProject no. PRINA382326.
The accession numbers for each isolate are shown in Table 1.
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ABSTRACT

Streptococcus agalactiae (Group B Streptococcus, GBS), a frequent colonizer of the human
gastrointestinal and genital tracts, is a leading cause of neonatal meningitis and an emerging
infectious pathogen in non-pregnant adults. GBS possesses a broad animal host spectrum,
including pigs and fish and there is increasing evidence that human invasive disease caused
by atypical GBS genotypes can occur through animal sources, e.g. through food-borne,
zoonotic infections. In this study, we made use of a previously described matrix-assisted laser
desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) typing method,
which, based on molecular variations of 28 ribosomal subunit proteins (rsp), classifies GBS
genotypes into major phylogenetic lineages. We found that 170 GBS strains isolated from
adult hospital patients in Hong Kong, can be readily assigned by MALDI-TOF MS into five
globally dominant rsp-profiles, allowing reliable prediction regarding their evolutionary
background and capsular serotype. We further demonstrate that MALDI-TOF MS allows for
high-throughput screening and detection of novel GBS genotypes, which we found to
predominantly arise from the under-researched pig and fish host reservoirs. In conclusion, we
confirm here the inter-laboratory transferability of an rsp-biomarker based MALDI-TOF MS
typing method, its capability in discriminating between GBS genotypes of the major global
phylogenetic lineages and its potential for rapid screening of hundreds of GBS isolates for the

surveillance of emerging GBS genotypes.
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INTRODUCTION

Streptococcus agalactiae (Group B Streptococcus, GBS), a beta-hemolytic and gram-positive
bacterium, is a frequent colonizer of the human gastrointestinal and genitourinary tracts [1].
GBS also possesses a broad animal host spectrum including cattle [2], pigs [3], camel [4] and
various freshwater fish species [5, 6]. Besides of its status as a leading cause of neonatal
meningitis and sepsis [7], GBS is an emerging infectious disease in non-pregnant adults,
especially in the elderly and immuno-compromised individuals [1, 8]. GBS disease in non-
pregnant adults prerequisites the switch of GBS from a harmless commensal to an invasive
pathogen, a mechanism that remains poorly understood [9]. However, there is increasing
evidence that infection can also occur through nosocomial or food-borne e.g. zoonotic
infection [10, 11].

The GBS clone ST283 impressively exemplifies the threat of zoonotic GBS infection in
adults. Between 1993-2012, this clone accounted for 27.4% of serotype III caused cases of
invasive disease in non-pregnant adults in Hong Kong [12, 13]. Interestingly, ST283 was
never found as colonizer in women, but was described as disease-causing strain in farmed
freshwater fish [6], suggesting the potential zoonotic hazard of raw fish caused by this
genotype. Conclusive proof followed in 2015, when ST283 was linked to a massive outbreak
of severe adult GBS disease in Singapore, unequivocally linked to consumption of raw fish
[10]. Genomic analysis of human and fish ST283 strains later confirmed freshwater fish as
reservoir of ST283, declaring this zoonotic clone a major infectious disease threat [14].
Large-scale epidemiological monitoring studies will be essential to gain insight into GBS
transmission dynamics, in particular regarding the significance of animal reservoirs for
emerging hyper-virulent GBS clones.

Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF
MS) has developed into a widely used method for high-throughput species identification in
routine diagnostics [15, 16]. Classifying microbial species based on their highly specific
whole-cell peptide fingerprint, MALDI-TOF MS can be used to accurately discriminate
between thousands of bacteria, including GBS [17, 18]. The genetic diversity of GBS was
found to be concurrent with variations in the protein patterns measured by MALDI-TOF MS
[19], which can be exploited for sub-species level discrimination of GBS strains [20]. We
recently expanded on these findings and showed that the highly conserved ribosomal subunit
proteins (rsp) serve as ideal biomarkers for strain level typing of GBS (Rothen et al

manuscript submitted). Specifically, indexing the mass variations of pre-defined 28 rsp using
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MALDI-TOF MS allows for classification of GBS isolates into the major phylogenetic
lineages, detection of hypervirulent CC17 strains and identification of obligate animal
associated lineages (Rothen et al. manuscript submitted).

In the study presented here, we aimed to apply the rsp-based MALDI-TOF MS approach to (i)
identify the major GBS genotypes circulating among patients with admission to the Prince of
Wales Hospital in Hong Kong between 2010-2018 and (ii) to identify the major GBS
genotypes found in fish and pig meat samples collected from Hong Kong wet markets. This
analyses will provide insights on whether (a) GBS genotypes circulating in hospitalized
humans and food animals in the Hong Kong area differ and (b) MALDI-TOF MS can be used
as a high-throughput and cost efficient screening tool for monitoring of emerging, potential
zoonotic GBS clones. Here, we have analyzed a collection of 249 GBS isolates using our
novel sample preparation and bioinformatics pipeline and demonstrate that our typing
approach based on measurement of 28 rsp can be easily transferred and deployed in

collaborating microbiological laboratories.
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MATERIAL AND METHODS

Origin of Group B Streptococcus strains analyzed in this study

For this study, a total of 249 GBS samples were analyzed that originated from various
sources. Sixty-three GBS strains stem from tilapias (Oreochromis mossambicus) and big head
carps (Hypophthalmichthys nobilis). Fish specimens were collected between 2016-2017 from
twelve wet markets across the Hong Kong areas New Territories, Kowloon and Hong Kong
Island. Bacteria were isolated from various body parts including the heart, liver, pancreas,
spleen, gills, flesh, minced meat and the skin. Fifteen GBS strains were isolated from
domestic pigs (Sus scrofa domesticus). Pig meat specimens were collected in 2018 from four
wet markets located in the Hong Kong areas New Territories and Hong Kong Island. Bacteria
were isolated from the tongue, the small intestine and from minced meat. One hundred
seventy-one GBS human strains were collected between January 2018 to May 2018 from

adult patients at the Prince of Wales Hospital in Shatin, Hong Kong.

Isolation of bacteria from animal and human samples

From the collected animal and human samples, bacteria were inoculated into Todd-Hewitt
enrichment broth with a subsequent transfer to chromogenic selective medium. Colonies
thereby identified as GBS were cultured on Blood agar (OXOID, Basingstoke, Britain) at 37
°C with 5 % CO? and single colonies stored at -80 °C until further use.

Capsular serotyping by multiplex-PCR

DNA extraction was done by emulsifying two to four bacterial colonies in 200 pl lysis buffer
(0.25 % sodium dodecyl sulfate, 0.05 N NaOH) at 95 °C for 5 minutes, followed by
centrifugation at 16,000 g for 5 minutes [21]. The supernatants were directly used as template
DNA and were stored at -20 °C until further analysis. Serotyping was performed by a
multiplex PCR method described by Imperi ef al. [22]. Briefly, PCR products were subjected
to gel electrophoresis, performed on 1.5 % agarose gels in 0.5 X TBE (45 mM Tris-HCI, 45
mM boric acid, | mM EDTA) buffer at 150 V for 50 minutes and bands were visualized using
Gel Doc (BioRad Laboratories, London, UK). Isolates that failed to be assigned to a serotype

by visual assessment of the PCR bands were grouped as non-typeable.
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MALDI-TOF MS analyses
Sample pre-processing

For each GBS strain, single colonies were used to prepare agar slants for interim storage prior
to MALDI-TOF MS analysis. On the day before mass spectrometry measurements, bacteria
were transferred to blood agar for overnight growth. The pre-processing of the GBS bacterial
samples followed the protocol established by Rothen et al. (manuscript submitted). Briefly, a
standardized amount of bacterial cells was first subjected to several washing steps and
subsequently mechanically ruptured by bead beating. The bacterial protein cocktail was then
transferred to an ultrafiltration column (Amicon®, Sigma-Aldrich) for removal of molecules
with a molecular mass below 3,000 Da. The final protein solution was spotted in
quadruplicates on a steel MALDI-TOF MS target plate and overlaid with 1 pl sinapic acid

matrix solution.

Microflex instrument setup

The MS measurements were carried out on a microflex LT MALDI-TOF MS system (Bruker
Daltonics, Bremen, Germany) with detection in the linear mode, allowing the interrogation of
high molecular weight samples. The analysis was carried out in the mass range between 3,000
and 25,000 Da. The instrument parameter settings were adjusted to be on par with the use of
sinapic acid matrix. The linear detector voltage was set to 1,943 V, with a laser frequency of
66.7 Hz, initial laser power of 70 %, maximal laser power of 90 % and laser attenuation offset
of 60 %. For each spectrum, 1,000 laser shots in 100 shot steps were acquired (flexControl
software 2.0, Bruker Daltonics) in a random walk movement, thereby ensuring an even
measurement covering the entire area of the sample spot. Each target plate was externally

calibrated using the reference spectra of Escherichia coli strain DH5a.

Spectra post-processing and internal calibration

Post-processing of the raw mass spectra (fid files) was carried out using a custom R script,
building on the R package “MALDIquant” [23]. Briefly, peak intensities were square root
transformed and smoothed using the “SavitzkyGolay” method. Baseline removal was done
using the “SNIP” baseline estimation method. Peak detection was carried out using the
“MAD” noise estimation method and a signal-to-noise ratio of two. Internal calibration with

800 ppm was carried out using ten GBS rsp masses (three mass alleles of L6, two mass alleles
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of L36 and S12, one mass allele of L14, L29 and S15) that altogether display molecular
weights distributed over a wide mass range (4,425 to 19,293 Dalton). An ascii file containing
the recalibrated protein mass values and corresponding intensities was automatically

generated for every mass spectrum.

Classification of mass spectra according to rsp-profile

The generated ascii files were used as input for a custom Python bioinformatics analysis
pipeline established by Rothen et al. (manuscript submitted). This pipeline allows for
automated identification of rsp mass variants contained in the ascii files, matching of rsp mass
variant combinations with 62 rsp-profiles deposited in a reference database and final
assignment of a rsp-profile to the mass spectrum. We found that the low molecular weight rsp
L36 (4,452 Da) and L34 (5,378 Da) were often subjected to a peak shift of a few Dalton, and
as a result were missed by our script. We therefore increased the allowed detection mass
range for these rsp from 400 ppm to 1500 ppm.

The classification decision steps were defined as follows: (1a) A single mass spectrum was
assigned an rsp-profile if there was one single top matching reference. (1b) No rsp-profile was
assigned if there were multiple top matching references or if less than 20 rsp were detected in
the mass spectrum. (2a) An isolate was assigned a final rsp-profile ID if there was one top
matching rsp-profile in one or more of the four replicate spectra. (2b) An isolate was assigned
no rsp-profile ID if all four replicate spectra were assigned no ID due to low mass counts or if
there were contradicting top matching rsp-profiles among the four spectra. (3) If a specific rsp
was missing in all mass spectra considered for the final rsp-profile ID of an isolate, a warning
message was generated, indicating the possibility of a new rsp-profile not yet contained in the

reference database.

Whole-genome sequencing of GBS strains

Genomic DNA from the GBS strains was extracted with the Wizard® Genomic DNA
Purification Kit according to the manufacturer’s protocol for gram-positive bacteria (Qiagen,
Limburg, Netherlands). Library preparation was done using the Illumina Nextera XT library
preparation kit and whole genome sequencing was carried on an Illumina Nextseq 500
system. Genomes were assembled using the metAMOS pipeline (version 1.5rc3). The draft

genomes were not yet deposited in the NCBI genome database.
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In silico molecular weight prediction of ribosomal subunit proteins

The ten generated GBS whole-genome sequences were used for in silico extraction of the
nucleotide sequences coding for 28 rsp using tBLASTn analysis. The most frequent post-
translational modifications [24], specifically N-terminal methionine loss and methylation,

were taken into account for subsequent prediction of the monoisotopic molecular rsp weights.

Average Nucleotide Identity (ANI) analysis

The phylogenetic relationship between the whole-genome sequenced GBS strains of this
study and a collection of publicly available GBS WGS was assessed by Average Nucleotide
Identity (ANI) analysis [25]. ANI was carried out using the Python module PYANI
(https://github.com/widdowquinn/pyani), applying the ANIm method. ANI calculations were
performed at sciCORE (http://scicore.unibas.ch/) scientific computing core facility at
University of Basel. Euclidian distance matrix calculation and UPGMA hierarchical cluster
analysis was performed using the R stats base package. Phylogenetic trees were edited and

visualized using the interactive tree of life (ITOL) website [26].
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RESULTS

Capsular Serotyping

PCR analysis revealed that there were six different capsular serotypes contained in our
collection of 249 GBS isolates. The human isolates were composed of serotype la (n=35), Ib
(n=22), I (n=3), Il (n=62), IV (n=9) and V (n=12). There were 17 non-typeable (11%)
human strains and another 10 strains for which serotyping was not yet carried out. The GBS
isolates from fish were composed of serotypes Ia (n=32), IIl (n=1), IV (n=1) and V (n=4). A
large proportion of fish GBS strains (40%) were non-typeable by PCR (n=25). All pig

isolates were found to carry capsular serotype III (n=15).

MALDI-TOF MS analyses
Identification of 28 predefined ribosomal subunit proteins in mass spectra

A total of 249 GBS isolates were measured in quadruplicates, totaling to 996 single spectra.
Of the twenty-eight ribosomal subunit proteins, which we previously found to be reliably
measurable by MALDI-TOF MS (Rothen et al. manuscript submitted), twenty-six could be
detected on average per spectrum. Of note, there were few low-quality mass spectra (n=51
from 41 isolates) with exceptionally small rsp counts (between 7 to 19 rsp). Hence, the
median rsp count per measurement was 27 out of the 28 rsp to be detected. With the exception
of L19 (found in 50% of spectra), all rsp were found at high levels across the spectra. L13,
L14, L17, L18, L23, L29, L30, L33, L35, S16, S19, S21 and S8 were found in between 92-
95% of spectra. L21, L22, L.24, 132, L34, L36, L6, S10, S12, S13, S15, S17, S18 and S9
were found in more than 95% of spectra. Visual inspection of some mass spectra with missing
L19 indicated, that this protein mass was in fact present in the spectra, but its mass peak was

rather diffuse and therefore not passing the signal-to-noise threshold set by us.

Assignment of isolates to known rsp-profiles

A first batch of mass spectra generated from 174 isolates allowed the assessment of how well
GBS isolates are assigned to known rsp-profiles by MALDI-TOF MS. Classification
according to rsp-profile identity initially failed for nine isolates. Upon visual inspection of the
mass spectra and manual identification of missing rsp, five of the nine isolates could be

assigned to an rsp-profile. In total, 170/174 isolates (98%) were successfully assigned to rsp-

101



profiles contained in the reference library. The rsp-profiles 2-6 which stand representative for
the globally dominant GBS phylogenetic genotype clusters were also most abundant in our
collection (Fig. 1a). Of the 170 classified isolates, 38% (n=65) were assigned to rsp-profile 5,
26% (n=44) to rsp-profile 6, 19% (n=32) to rsp-profile 4, 13% (n=22) to rsp-profile 2, 5%
(n=8) to rsp-profile 3 and one isolate each were assigned to rsp-profile 7 and rsp-profile 31.
With regards to the isolation source of the 170 GBS isolates, a clear pattern regarding
assigned rsp-profile was seen. While isolates of human origin were found to stem from all
seven rsp-profiles covered here, fish isolates almost exclusively fell into rsp-profile 5, with
one isolate displaying rsp-profile 4 and one with rsp-profile 6, respectively. The sole isolate

from pig origin was assigned to rsp-profile 4 (Fig. 1a).

Assignment of isolates to novel rsp-profiles

In all four replicate spectra of 31 isolates, one or more rsp were found to display an rsp mass
variant not yet contained in our reference database, indicating the occurrence of novel rsp-
profile. Visual inspection of the mass spectra led to the assignment of two isolates to the
already known rsp-profiles 4 and 5, respectively. The remaining 29 isolates (12% of the 249
isolates) were found to either display previously unknown rsp mass variants (n=27) or new
combinations of known rsp mass variants (n=2). The novel rsp-profiles contained in these 29
isolates were cross-compared and the distinct profiles termed novel rsp (nrsp)-profile 1 to 12
(Fig. 1b). The most abundant novel profile was nrsp-profile 8 (»=13), which was exclusively
found in GBS strains isolated from pigs. Nrsp-profile 7 (n=5) and nrsp-profile 5 (n=2), the
only other novel profiles found in multiple isolates, were found to be specific for strains from
fish and human origin, respectively. All remaining nrsp-profiles were observed just once in

GBS strains isolated from human samples.

Classification of isolates with missing L19 mass variant

The overall low measurability of rsp L19 had implications for 44 GBS isolates, in which L19
was missing in all replicate spectra considered for rsp-profile classification. For 13 isolates,
the absence of L19 led to the assignment of a double rsp-profile ID (Fig. 1c). Precisely, rsp-
profile 4 and rsp-profile 31, which aside from L19 share an identical combination of rsp
variants, were identified as closest match, with 27 of 28 rsp detected. For the remaining 31
isolates, the absence of L19 was not an issue, since the detected rsp mass variants allowed

unambiguous assignment to a distinct rsp-profile.
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In silico confirmation of rsp-profiles

From a total of ten GBS isolates from fish, WGS data was available and was used for in silico
prediction of rsp molecular weights and assignment of MLST identity through the S.
agalactiae PubMLST website [27]. For all ten isolates, the rsp-profile assigned by MALDI-
TOF MS was confirmed by the WGS data (Table 1). Eight isolates were assigned to rsp-
profile 5 by both MALDI-TOF MS analysis and in silico typing. Of these eight isolates, one
strain was identified as MLST single-locus variant of ST7 and the remaining seven isolates as
ST7. One isolate was assigned to rsp-profile 4 by MALDI-TOF MS analysis. Due to
insufficient sequence quality, only 26/28 rsp masses and no ST could be predicted in silico for
this isolate. The 26 predicted rsp masses all corresponded to the mass alleles of rsp-profile 4,
thus supporting that this is the true rsp-profile of this GBS strain. One remaining GBS isolate
was not assigned to any rsp-profile by MALDI-TOF MS, due to rsp L18 which displayed a
mass variant not yet contained in our reference database in all quadruplicate spectra,
indicating the occurrence of a novel rsp-profile (nrsp-profile 7). This was confirmed by in
silico analysis, which confirmed a previously unknown molecular rsp mass variant of L18 at
12,867 Da, corresponding to the peak seen the mass spectra. Interestingly, the ST of this

particular strain was identified as ST931, a single-locus variant of the bovine ST591.

Correlation between MALDI-TOF MS assigned rsp-profiles and capsular serotype

The 168 GBS isolates, which were serotyped and assigned by MALDI-TOF MS to one of the
dominant rsp-profiles 2-6 in this study, were used to assess the correlation between strain rsp-
profile and capsular serotype (Fig. 2a). We found that strains assigned to rsp-profile 2 (n=21)
and rsp-profile 6 (n=40) were mostly displaying capsular serotype III (90% and 70%,
respectively). Strains assigned to rsp-profile 4 (n=26) were found to be mostly linked to
serotypes Ia (65%) or III (12%). Strains assigned to rsp-profile 5 (n=62) were either linked to
serotypes la (34%) and Ib (26%) or were non-typeable (31%). Strains assigned to rsp-profile
3 (n=8) were most heterogeneous in terms of associated capsular serotype. One strain each
displayed serotype Ia, Ib, II, III and IV, two strains displayed serotype V and one strain was
non-typeable.

The rsp-profile-serotype patterns observed in the GBS isolates from Hong Kong correspond
largely to what can be observed in a global collection of 523 GBS strains analyzed by our
group (Fig. 2b). In accordance to the here presented results, rsp-profiles 2 and 6 are

commonly linked to strains with serotype III and rsp-profile 4 is linked to serotype Ia in the
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global collection. Rsp-profile 5, in addition to be strongly linked to serotypes Ia, Ib, shows a
stronger link to serotype II strains globally than in our study. Lastly, rsp-profile 3 has been
reported to be strongly linked to serotype V and to a lesser degree to serotypes Il and IV in
the global collection. This pattern could not be convincingly supported here based on the low

number (n=28) of isolates in this profile.

Average Nucleotide Identity analysis of whole genome sequenced GBS strains

After demonstrating that the rsp-profiles assigned to the ten fish GBS isolates by MALDI-
TOF MS correspond to the in silico typed rsp-profiles (Table 1), average nucleotide identity
(ANI) analysis was performed in order to confirm that genotypes displaying identical rsp-
profiles share the same phylogenetic background. ANI analysis was carried out using WGS
data of the ten fish isolates and combined with publicly available WGS data of 43 GBS
strains. These strains represent the six globally dominant rsp-profiles 1-6 which we previously
found to correspond to the major GBS phylogenetic lineages (Rothen et al. manuscript
submitted). ANI analysis grouped the total 53 strains based on genome-wide assessment of
inter-strain similarity (Fig. 3). The eight fish isolates (A1, Al1, A12, A23, A31, A41, A60,
A63) displaying rsp-profile 5 were located within the rsp-profile 5 cluster in the UPGMA
phylogenetic tree. This phylogenetic cluster has been shown to harbor GBS genotypes from a
broad range of hosts including human and fish species (Rothen ef a/. manuscript submitted).

The sole fish isolate (A26) assigned to rsp-profile 4 was grouped together with rsp-profile 4
genotypes of MLST clonal complex (CC) 103 background. These CC103 genotypes are of
special interest because they were shown to form a genetically highly distinct lineage (Rothen
et al. manuscript submitted). Lastly, the ST931 isolate (A49), displaying the novel nrsp-
profile 7, was found to cluster closest to genotypes of the obligate bovine rsp-profile 1

lineage.
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DISCUSSION

The potential use of MALDI-TOF MS for Group B Streptococcus strain-level typing has
previously been demonstrated by the successful identification of hypervirulent GBS
genotypes ST17 and ST1 based on detection of genotype-specific protein masses [20, 28]. We
have recently expanded on these findings and proposed a MALDI-TOF MS method that
classifies GBS genotypes based on molecular weight variations of 28 ribosomal subunit
proteins (rsp). Unlike previous studies, this approach builds on beforehand in silico calculated
protein molecular masses, moving away from the traditional ‘pattern-recognition’ approach
towards targeted, biomarker-based MALDI-TOF MS microbiological identification. The
thereby gained resolution power allows assignment of GBS strains to distinct rsp-profiles,
which ultimately allows classification of strains according to their core-genome phylogenetic
backbone and provides a predictive value regarding probable capsular serotype, virulence
capacity or host origin (Rothen ef al. manuscript submitted). Here, we have applied this
method to analyze a collection of 249 GBS strains isolated from human and animal sources in
Hong Kong. We aimed to (a) confirm the transferability of this method between different
laboratories and MALDI-TOF MS platforms and (b) investigate the usefulness of this method
for high-throughput screening of novel GBS genotypes that we hypothesized can be often
found in the diverse animal host reservoirs.

Our MALDI-TOF MS analyses demonstrate that translation of our previously established
bacterial sample processing protocol to a different laboratory and different MALDI-TOF MS
platform allows for the generation of high quality mass spectra. All but one of the 28 rsp were
reliably measured (27 rsp above 92% and 14 rsp above 95%) in the 996 mass spectra
generated in this study. The overall measurability of the rsp is likely even higher, given that
there were 29 isolates displaying novel rsp mass variants, which were not yet present in our
reference database and therefore not picked up in the analysis. The only current drawback
pertains to the low measurability of the rsp L19, which was found in only half of the spectra.
We do not think that this is a general technical limitation of the Microflex platform, given that
L19 was still abundant in the other half of the spectra and that by experience a simple
repetition of MALDI-TOF MS measurement resulted in the detection of missed L19. Visual
inspection of isolates A23, A31 and A60 mass spectra with missing L19 revealed that the
main mass variant was present but the peak not distinct enough to pass the signal-to-noise
threshold. In silico prediction of L19 in these isolates confirmed this observation and can

likely be extrapolated to the other isolates with missing L19. Of note, L19 is a highly
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conserved rsp, mostly present as the main mass variant and for the majority of genotypes,
missing of L19 does not interfere with the correct assignment of the rsp-profile. The 13
isolates that were assigned with a double-ID due to the missing L19, all matched to both rsp-
profile 4 and the rsp-profile 31, which is not a frequently seen profile (1 out of 796 WGS).
Furthermore, it has been attributed to a GBS genotype that is located in the same phylogenetic
cluster as the majority of rsp-profile 4 genotypes. Hence, the double ID would in this case still
allow the assignment of a genotype to its correct evolutionary relationship (Rothen et al.

manuscript submitted).

The classification of the 170 GBS isolates with known rsp-profile confirmed that the same
major GBS phylogenetic lineages which are dominant on global scale are also present highest
in our collection (Fig. 1a). Of the six dominant lineages described previously (Rothen et al.
manuscript submitted), only isolates with rsp-profile 1 were not contained in our collection.
This was to be expected since GBS genotypes of rsp-profile 1 were found to be strictly
associated with bovine origin, a host that we have not yet covered in our dataset. As opposed
to PCR serotyping which failed to type 40% of fish isolates, MALDI-TOF MS based typing
was very sensitive, with 98% (170/174) of isolates being assigned to a distinct rsp-profile.
Comparison of 168 GBS strains from Hong Kong and 523 strains from the NCBI genome
database, revealed high concordance between the two collections with regards to association
of rsp-profile and capsular serotype (Fig 2). This further supports the value of the MALDI-
TOF MS assigned rsp-profile in providing a predictive measure of likely associated capsular

serotype.

A central outcome relates to the 29 genotypes (12% of total collection) that were found to
display a novel rsp-profile not previously contained in our reference database. Our data
supports that rsp-based MALDI-TOF MS can be used to reliably screen for such genotypes,
which we found to predominantly arise from the under-researched animal hosts. While two of
the pig GBS isolates fell into known rsp-profiles (rsp-profile 4 and/or rsp-profile 31), all
remaining 13 isolates (87% of all pig isolates) displayed an identical and novel rsp-profile
(Fig. 1b), raising the possibility that these genotypes represent a distinct, pig-associated
phylogenetic lineage.

Of 62 fish GBS isolates investigated here, 87% (n=54), including eight of the ten whole-
genome sequenced isolates (Table 1) fell into the already known rsp-profile 5. However, there

were five fish isolates (8%) that were, upon visual inspection of the mass spectra, found to
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share a novel rsp-profile (nrsp-profile 7). WGS based in silico confirmation of the rsp-profile
in one of these isolates (A49) confirmed the new fish specific lineage nrsp-profile 7 (Table 1).
Integration of nrsp-profile 7 into our bioinformatics pipeline followed by repeated
measurement of the other four fish isolates confirmed the presence of nrsp-profile 7 in these
strains. This example stands representative of how the rsp-based MALDI-TOF MS method
can be used for rapid screening of hundreds of isolates, flagging of potential novel genotypes
which are then subjected to WGS. The WGS are subsequently used for in silico confirmation
of the measured 28 rsp followed by the final integration of newly discovered rsp-profiles to
the reference database. This approach of collecting animal samples from markets and
integration of novel rsp-profiles to the reference database, allows to rapidly screen for
possible occurrence of such GBS genotypes in human patients in the future. The ANI
phylogenomic analyses conducted here exemplified that the expression of an atypical rsp-
profile can be a reliable indicator that its GBS genotype belongs to a very distinct
phylogenetic lineage. Two fish isolates (A26, A49) not belonging to the dominant rsp-profile
5 were found to display a profoundly different phylogenetic background (Fig. 3).

In conclusion, we confirm here the inter-laboratory transferability of our rsp-biomarker based
MALDI-TOF MS typing method, its capability to discriminate between GBS genotypes of the
major global phylogenetic lineages and the power for rapid screening of hundreds of GBS
isolates for surveillance of GBS populations circulating and potential identification of novel

emerging genotypes.
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ONGOING ANALYSES & OUTLOOK

As part of this ongoing collaboration, we will next evaluate whether single repetition of
MALDI-TOF MS measurements will be sufficient to resolve the problem of low rsp L19
measurability. If necessary, technical adjustments of the Microflex machine or the
bioinformatics pipeline will be considered. Further, collection of more GBS strains isolated
from fish, pig and cow samples from Hong Kong wet markets is currently conducted.
Together with a large collection of more than 1,000 human GBS isolates, which have been
collected at the Prince of Wales Hospital during recent years, these samples will be analysed
by MALDI-TOF MS, thereby significantly adding to our collection of currently 249 isolates.
In addition, whole-genome sequencing of all here reported GBS strains isolated from pig and
fish samples is currently under way. The WGS data will allow us to in silico confirm the rsp-
profiles assigned by MALDI-TOF MS. Importantly, the sequencing data will also allow
confirmation and integration of the novel rsp-profiles into our reference database. Lastly, we
will extend the genome-wide phylogenetic analyses by incorporating all newly sequenced
strains into our collection of 796 GBS strains described in our previous work (Rothen et al.
manuscript submitted). By performing additional phylogenomic analyses, including core-
genome analysis using EDGAR [29], we will gain a better picture on the evolutionary

background of the novel GBS genotypes retrieved from pig and fish sources in this study.
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Figure 1: Classification of Group B Streptococcus (GBS) isolates based on ribosomal subunit protein (rsp)
based MALDI-TOF MS analysis. (a) Assignment of 174 GBS isolates to rsp-profiles already contained in the
reference database. (b) Assignment of 29 GBS isolates to novel rsp (nrsp)-profiles, which were not yet
incorporated into our reference database. (¢) Assignment to known rsp-profiles of 44 GBS isolates for which rsp
L19 was not detected in the mass spectrum. Colour coding indicates isolation source of GBS strains (green:

human; blue: fish; brown: pig).
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Figure 2: Barplots visualizing associated capsular serotypes of Group B Streptococcus (GBS) strains with
ribosomal subunit protein (rsp)-profiles 2 to 6. (a) Collection of 168 GBS strains assigned to rsp-profiles by
MALDI-TOF MS in this study. (b) Global collection of 523 GBS strains from the NCBI genome database

(Rothen ef al. manuscript submitted). nt: non-typeable strains.
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Figure 3. UPGMA phylogenetic tree of 53 Group B Streptococcus (GBS) strains based on genome-wide average
nucleotide identity (ANI) analysis. The set includes ten strains that were whole genome sequenced in this study
and 43 reference strains that represent major GBS phylogenetic lineages. Inner circle: rsp-profile identity of

reference strains. Outer circle: Strain host origin. (Scale bar: nucleotide substitutions per site).
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Table 1. In silico confirmation of MALDI-TOF mass spectrometry (MS) assigned ribosomal

subunit protein (rsp)-profile of ten Group B Streptococcus strains. SLV: single-locus variant,
nt: non-typeable, nrsp-profile: novel ribosomal subunit protein profile.

Isolate ID Isolation Source  Sequence type  MS assigned rsp-profile in silico assigned rsp-profile
Al Fish SLV 7 rsp-profile 5 rsp-profile 5
All Fish 7 rsp-profile 5 rsp-profile 5
Al2 Fish 7 rsp-profile 5 rsp-profile 5
A23 Fish 7 rsp-profile 5 rsp-profile 5
A31 Fish 7 rsp-profile 5 rsp-profile 5
A4l Fish 7 rsp-profile 5 rsp-profile 5
A60 Fish 7 rsp-profile 5 rsp-profile 5
A63 Fish 7 rsp-profile 5 rsp-profile 5
A26 Fish nt rsp-profile 4 rsp-profile 4*
A49 Fish 931 nrsp-profile 7 nrsp-profile 7

*26/28 rsp predicted corresponded to rsp-profile 4 and 2/28 rsp could not be

predicted due to sequence quality
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Chapter 7

General Discussion
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The content of this P hD thesis is centered around two pathogens, namely Plasmodium
falciparum, the main cause of severe malaria and a major driver of maternal and early
childhood mortality in sub-Saharan Africa [3], and Group B Streptococcus, a global leading
cause of neonatal meningitis and sepsis [72]. The pursuit of combating these diseases through
vaccine development, in recent years increasingly aided by the introduction of high-
throughput omics technologies, represents the overarching theme of the five manuscripts

presented here. The key findings for each of the presented chapters are summarized below.

Chapter 2: Clinical evaluation of a radiation-attenuated P. falciparum whole sporozoite
vaccine revealed impaired immunogenicity and protective efficacy in Tanzanian volunteers

compared to malaria-naive subjects undergoing an identical vaccination regimen.

Chapter 3: RNA-Seq whole blood gene expression analysis provides valuable insights into
molecular dynamics following controlled human malaria infection patterns in malaria pre-
exposed volunteers. Magnitude and timing of early transcriptional signatures is dependent on

parasite pre-patent period.

Chapter 4: A ribosomal subunit protein (rsp) based MALDI-TOF MS typing method
classifies GBS genotypes based on core-genome phylogenetic lineages, detects hypervirulent

strains and allows prediction of serotype, CC and host origin.
Chapter 5: Whole genome sequences of under-researched GBS genotypes isolated from
camels provide the data basis for phylogenomic assessment of these strains and incorporation

into our rsp-database.

Chapter 6: The inter-laboratory reproducibility and the utility of the rsp-based MALDI-TOF

MS method for screening and monitoring of emerging animal GBS genotypes is confirmed.
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7.1 Evaluation of malaria vaccines in different populations using

controlled human malaria infection: Chapters 2 and 3

Chapter 2: Safety, Immunogenicity, and Protective Efficacy against Controlled Human Malaria Infection of

Plasmodium falciparum Sporozoite Vaccine in Tanzanian Adults

Chapter 3: Whole blood transcriptome changes following controlled human malaria infection in malaria pre-

exposed volunteers correlate with parasite prepatent period

Since its use as treatment for neurosyphilis in the early 1900s [172], controlled human malaria
infection (CHMI) has evolved into a highly useful tool for the evaluation of anti-malarial
drugs [42,43], diagnostic tools [173] and assessment of malaria vaccine protective efficacy, as
presented in Chapter 2 of this thesis. CHMI allows the evaluation of novel drug and vaccine
candidates in a well-controlled and safe environment through the injection of individuals with
malaria parasite stages from either the liver or blood stage (reviewed in [174]). In the work
presented here (Chapters 2 and 3), liver stage parasites, e.g. fully infectious, live sporozoites
were used for CHMI. Traditionally, CHMI using sporozoites has been carried out by exposure
of individuals to repeated, infectious mosquito-bites [175,176]. A major milestone was
achieved when the biotechnology company Sanaria Inc. (www.sanaria.com) managed to
produce aseptic, purified, cryopreserved P. falciparum sporozoites (PfSPZ), that are
infectious in vivo and can be shipped globally to centers conducting CHMI [40,41]. These
sporozoites are injected via needle and syringe either intradermally (as described in Chapter
3) or through direct venous inoculation (DVI) (as described in Chapter 2).

Both, the mosquito-bite delivery and direct inoculation approaches have their specific benefits
and disadvantages when used for the assessment of vaccine efficacy. The mosquito-bite
approach has the advantage that it mimics closest the natural way of malaria infection. The
number of sporozoites inoculated via controlled mosquito-bite is comparable to parasites
injected during natural exposure in the field. Further, the mosquito-bite inoculated sporozoites
are going through the skin stage of infection, while this is not the case during direct venous
inoculation of the parasites [174]. The limitations of the mosquito-bite challenge model
include a high demand in onsite infrastructure (insectary and laboratory structure), the need
for entomological expertise and great variability in the number of injected sporozoites

between individuals [175]. In contrast, intradermal or direct venous injection of PfSPZ
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enables the standardization of the number of parasites injected per individual, allowing the
assessment of different and defined dosages in vaccine trials. Direct inoculation of individuals
with PfSPZ for vaccine efficacy assessment circumvents the need for high natural malaria
exposure which is essential in clinical studies assessing vaccine efficacy through field
exposure [46]. At the same time, the high doses (3.2 x 10’ PfSPZ in Tanzania trial presented
in Chapter 2) used for DVI CHMI might be too rigorous and not sufficiently reflect to what
extent the vaccine induced immunity would contain the malaria disease under natural

conditions (Stephen Hoffman, personal communication).

The clinical trial results presented in Chapter 2 are of great interest and relevance to the
malaria vaccinology field, given that this was the first e fficacassessment of any malaria
vaccine by CHMI in Africa. While confirming the safety and tolerability of the PfSPZ
vaccine, our results also demonstrate significant differences between malaria-experienced
Tanzanian volunteers and malaria-naive U.S. volunteers both in terms of induced vaccine
immunogenicity and protective efficacy. Among U.S. volunteers undergoing the identical
immunization regimen, 12 of 13 subjects (92.3%) were protected from homologous mosquito-
bite CHMI [177]. In our high-dose group of individuals receiving five doses of 2.7 x 10’
PfSPZ, the protective vaccine efficacy (VE) was 20% (4/20) as assessed by DVI CHMI. In a
third study, Malian volunteers received five doses of 2.7 x 10° PfSPZ and protection against
natural P. falciparum infection was 52% by time to event or 29% by proportional analysis
[46]. Although the three mentioned studies are not directly comparable due to the different
types of CHMI used to assess protective efficacy, the VE reported in the Tanzanian cohort is
in closer range to what has been reported in malaria-experienced individuals from Mali.
While the protective efficacy of the PfSPZ vaccine was 20 % in the high dose group, only one
volunteer was protected from homologous CHMI in the Tanzanian low dose group. This is an
indication for a dose-effect and suggests that an even higher PfSPZ dose could potentially
induce higher immunogenicity and protective efficacy in malaria-experienced volunteers.

The fact that vaccine induced immune responses and conferred protective efficacy can be
subjected to significant geographical variation, especially between industrialized nations and
low and middle-income countries is well-known [178]. Vaccine development including
formulation, vaccination schedule and evaluation for efficacy are assessed in cohorts that are
not necessarily comparable to cohorts where the vaccine will be introduced upon licensure
(reviewed in [178]). One of the earliest and most extensively studied examples for regional

variation in vaccine efficacy is bacille Calmette-Guérin (BCG), for which protective efficacy
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was found to vary, amongst others, between subjects from the UK and Mali [179]. Other
examples of regional differences in vaccine immunogenicity include the hepatitis B and
Haemophilus influenzae type b vaccines [180] as well as several oral vaccines against cholera,
polio or Shigella [181]. What exactly determines the varying degrees of individual responses
to an identical vaccine remains subject of debate and research. While environmental factors
certainly have a main influence, as for instance shown in the case of BCG [179,182], it is
likely not the only determinant, given the documented cases of differing responses among
individuals from the same environment [178]. The higher levels of memory T cells at baseline
in the Tanzanian volunteers of our study, as compared to levels in U.S. volunteers, indicate
that pre-existing immunity against malaria could be one explanation for the reduced vaccine
efficacy. Co-infection with parasites, including soil-transmitted helminths, were found to have
not contributed to the reduced immune responses in our study, but have been shown as
potential modulator of the human immune response to malaria [183]. Similarly, the potential
profound impact of the gut microbiome on vaccine effectiveness is increasingly
acknowledged [184].

Collectively, the results of this first PfSPZ clinical trial in Tanzania underline the need to
understand the molecular mechanisms involved in anti-malarial protective immunity to
explain why and how malaria-experienced individuals appear to respond weaker to the same
vaccination regimen as malaria-naive individuals of same age. Besides of this, a
standardization of the CHMI methodology and trial protocols conduct between centers is
desirable in order to facilitate inter-site comparison of PfSPZ study outcomes. This will
include the use of the same type of CHMI for vaccine efficacy assessment and distinction
between homologous (vaccine-strain) and heterologous (non-vaccine strain) CHMI [185].
Regarding the post-CHMI follow-up period and the treatment of individuals that display
blood-stage parasitemia, a decision on whether using thick blood smear or the more sensitive
qPCR as decision point to initiate treatment will need to be made [186]. An ideal scenario for
the conduct of harmonized PfPSZ clinical vaccine trials would be the establishment of
specific, regional CHMI systems, that are tailored to account for population characteristics
including genetic predispositions like hemoglobinopathies or known pre-existing immunity to

malaria [174].

With the work presented in Chapter 3, we made a first step towards better understanding the
molecular mechanisms occurring among Tanzanian volunteers following intradermal CHMI

without previous vaccination. We used RNA-Seq in order to investigate whole blood

119



transcriptional changes at day 5, 9 and 28 following PfSPZ infection in comparison to
baseline. A first and important finding was the fact that most genes with differential
expression levels compared to pre-CHMI baseline were found at day 5 post CHMI, during the
clinically silent liver phase. This stood in contrast to the modest transcriptional changes
recorded at day 9 at the time point when it is commonly assumed that parasites transition from
the liver to the blood. This finding supports that the timing of whole blood collection as well
as the inclusion of early time points (before day 9) during the clinically silent liver stage
needs to be targeted to capture changes in transcriptional signals in whole blood.

In order to better interpret the functional relationships of the hundreds of genes that were
found differentially expressed during the liver stage, we made use of the established blood
transcriptome modules (BTM). The BTM framework was established by Li et al., who used
more than 30,000 human blood transcriptomes from over 500 studies to define transcriptional
networks of genes based on observed co-expression patterns. This allowed the final definition
of 334 BTM, each standing representative of specific biological functions [187]. Such BTMs
can facilitate the interpretation of whole blood transcriptomics data, as was the case in our
study, where we used the BTMs as basis for gene set enrichment analyses (GSEA).

The BTMs that were found differentially expressed in our study provide first time insight into
the broad responses in malaria-experienced subjects following intradermal CHMI. The up-
regulation of genes in the proteasome module observed strongest at day 9 and significant at
day 28 post CHMI are interesting given that the proteasome is known to play a key function
in MHC protein processing and antigen presentation [188]. The genes in this module could
therefore be of special interest regarding the development of adaptive immune responses
against P. falciparum. The antigen processing and presentation pathway and
phosphotidylinositol signaling system which we found to be strongest down-regulated at day
5 in subjects with low time to blood parasitemia indicates a possible importance of these
networks in the early innate immune response acting on the parasite during the pre-
erythrocytic stage of infection. The up-regulation of genes in the MAPK RAS signaling and
ubiquitination modules is an interesting parallel to a finding of Ockenhouse et al. [189], who
reported activation of MAP kinases by natural acquired P. falciparum infection. The same
study reported over expression of genes linked to the genet ontology term “protein
ubiquitination” following mosquito bite challenge of malaria-naive subjects [189].

Among the BTMs characterized in our work, several have been reported in similar studies
that investigated transcriptional responses following controlled infection with P. falciparum

or vaccination [66]. We can for now only draw limited conclusions when comparing our

120



results with these studies, given the differences in study participants (malaria-naive or
vaccinated vs. pre-exposed subjects), challenge model (mosquito bite vs. intradermal
injection) and time point of gene expression assessment. An interesting question will be to
address, whether a generic immune response to malaria infection or vaccination even exists,
or if the molecular networks affected vary depending on geographical location, Plasmodium
genotype or individual genetic predispositions.

Important insights regarding this question were made by Li et al. who in the pursuit of
determining a generic molecular signature for human vaccine response, performed BTM
aided transcriptional analyses of recipients of five different human vaccines. This study
confirmed that early BTM signals are predictive of later antibody response and can therefore
be used to decrypt immune responses to vaccination. Although vaccines of the same general
type (viral, polysaccharide or protein based) showed similar activation and deactivation of
BTMs, the responses elicited by each vaccine were found to be type-specific. For example in
the case of meningococcal conjugate-polysaccharide vaccines, it was found that distinct
BTMs are induced by different components of the same vaccine [187]. The latter has possible
implications for expected immunological responses against the subunit vaccine RTS,S and the
whole parasite PfSPZ vaccine.

A further central finding of our study pertained to the individual magnitude and timing of
early gene expression changes, which we found to be associated with the duration of parasite
prepatent period. We speculate that this reflects the varying degrees of previous exposure and
pre-existing immunity among the ten subjects. Capturing time points with the highest
transcriptional expression changes might depend on the size of the parasite load multiplying
in the liver. This observation strongly suggest that blood collection timing is critical and
should be conducted at more frequent intervals, additionally covering early time points

between days 1 to 4 post CHMI.

Building up on the data presented in Chapter 3, continuous RNA-Seq analyses are currently
being conducted. The sample data set will include volunteers from the PfSPZ Tanzania trial
(presented in Chapter 2) who underwent both vaccination and CHMI, as well as malaria-
naive volunteers from a mosquito-bite challenge trial (NCT01994525). In addition to
expanding the RNA-Seq analyses to other PfSPZ cohorts, ongoing technological advances are
contributing to a better understanding of the complex transcriptomic data generated from such
studies. Presently, a fundamental challenge when performing bulk RNA-Seq is the

heterogeneity of the source material, e.g. the whole blood. Such a global transcriptome
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analysis provides insight into the average gene expression changes but does not reveal which
specific cell subsets in the peripheral blood drive the observed gene expression dynamics. A
variety of computational methods have therefore been developed for inferring cell subset-
specific information via in silico deconvolution from heterogeneous gene expression data
(reviewed in [190]). As a promising alternative, single-cell RNA-Seq (scRNA-Seq) is
emerging as a powerful method allowing the assessment of gene expression changes on cell-
level. Due to decreasing sequencing costs and constant evolvement of technology, scCRNA-
Seq will have a huge impact on our capacity to study innate and adaptive immune responses

on cellular level and aid in the discovery of novel immune cell subtypes [191].

As the burden of severe, clinical malaria in sub-Saharan Africa is steadily decreasing, the
visibility of malaria co-occurring infectious diseases increases. Important insights regarding
malaria co-morbidities stem from research focusing on invasive non-Typhoid Salmonella
(NTS), which is commonly associated with P. falciparum severe disease [192]. It was found
that the induction of heme oxygenase 1 (HO-1), a protective mechanism in the human host to
cope with the cytotoxic effect of heme, which is released during malarial hemolysis, also
leads to decreased neutrophil function and a decreased production of bactericidal reactive
oxygen species (ROS) [193]. Hence, a molecular mechanism conveying tolerance against one
pathogen (P. falciparum) impairs resistance to another (NTS). Importantly, this detrimental
effect is not restricted to severe malaria cases only. In Burkina Faso, children with subclinical
malaria were found to display sustained hemolysis and induction of HO-1. This observation
suggests that asymptomatic malaria, although not leading to apparent clinical symptoms
nevertheless does harm to the individual, e.g. through increased susceptibility to invasive
bacterial disease [194]. Besides of NTS a range of other bacterial species are likely linked to
clinical and asymptomatic malaria co-morbidity burden. As a common disease-causing
pathogen in sub-Saharan Africa [195], Group B Streptococcus should be considered as a

major contributor to malaria facilitated bacterial invasive disease.
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7.2 MALDI-TOF MS as a phyloproteomic tool for post-vaccination
monitoring of GBS genotype landscape and screening for emerging

strains: Chapters 4, 5 and 6

Chapter 4: Subspecies typing of Streptococcus agalactiae based on ribosomal subunit protein mass variation

by MALDI-TOF MS

Chapter 5: Draft Genome Sequences of Seven Streptococcus agalactiae Strains Isolated from Camelus

dromedarius at the Horn of Africa

Chapter 6: Tracing and monitoring of emerging Group B Streptococcus genotypes with zoonotic potential in

Hong Kong

In the second part of this thesis, we have demonstrated how a combinatorial approach, that
exploits the increasingly available wealth of bacterial genomic data and the propensity of
MALDI-TOF MS for high-throughput protein analysis, can be used to design a
phyloproteomic typing method for Group B Streptococcus. Our results underline the potential
of this tool as a method for large-scale monitoring of vaccine impact on the GBS genotype
composition and emergence of escape strains from various host reservoirs.

In the work presented in Chapter 4 we show the path from conceptualizing the idea of a
ribosomal subunit protein (rsp)-based MALDI-TOF MS GBS typing method to the design and
validation of such a scheme. Analysis of whole-cells by MALDI-TOF MS can rapidly
generate a highly characteristic snapshot of the proteomic makeup of the bacterial strain
studied. However, distinction of closely related microbes, for instance strains or serotypes of
the same species, that share highly similar protein profiles is challenging [196]. To the
inherent complexity of MALDI-TOF mass spectra, which can contain hundreds of protein
mass data points, an additional layer of complexity is added by differences in spectral makeup
depending on confounding experimental factors like bacterial growth time and processing
prior to analysis, the matrix used or MALDI-TOF MS instrument parameters. Collectively,
such factors limit the inter-laboratory comparison of MALDI-TOF mass spectra [50,197]. In
Chapter 4, we describe how we moved away from the conventional approach of pattern-
recognition based classification, e.g. matching of full spectra against a reference database,

towards a targeted, marker-based identification method. Besides of developing a standardized
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bacterial sample processing protocol for improved spectral quality, we were able to overcome
the aforementioned challenges by exploiting the wealth of publicly available GBS whole
genome data. For our study, sequence data of 796 GBS strains was used to in silico assess the
suitability of rsp as biomarker masses for targeted MALDI-TOF MS typing of GBS strains.
This novel method targets 28 known ribosomal loci, allowing us to simultaneously detect
molecular mass variation across a concatenated amino acid sequence of ~ 2,700 aa. We can
thereby exploit subtle differences in an evolutionary highly conserved part of the GBS

genome for a phyloproteomic classification of closely related GBS genotypes.

Our results revealed that the majority of GBS strains circulating in the human host can be
assigned by MALDI-TOF MS analysis to one of the five rsp-profiles 2, 3, 4, 5 or 6. Our
proteomic classification thereby largely corresponds to the classification by MLST, which
groups GBS genotypes based on nucleotide variation at seven housekeeping gene loci into the
five well-described, globally dominant clonal complexes CC17, CC1, CC23, CC10 and CC19
[116]. Core-genome phylogenetic analysis of the 796 GBS whole genome sequences that
were used to establish the rsp-profile scheme, confirmed that the assigned rsp-profiles classify
GBS genotypes in high concordance to their core-genome phylogenetic relationship.
Although our MALDI-TOF MS assigned rsp-profile identity fails in some cases to distinguish
between genotypes of different CCs, it does provide a highly reliable indication on the stable
evolutionary backbone of the isolate. This was exemplified by genotypes belonging to CC17
and genotype ST452, which both display rsp-profile 2 and therefore cannot be distinguished
by our typing method. GBS clone ST452 has been described to have emerged from massive
genetic recombination events between CC17 and CC23 lineages [198]. Hence, the assigned
rsp-profile 2 does provide an indication on the ancient origin/backbone of this newly
emerging strain, raising the possibility that our rsp-based grouping might be more reflective
of the “true” phylogeny of this particular clone.

Importantly, there seems to be a strong correlation between most of the MALDI-TOF MS
distinguishable rsp-profiles and the capsular serotype of such genotypes. For example, rsp-
profile 1 is indicative of serotype II, rsp-profile 2 is strongly linked to serotype III and rsp-
profile 3 is predominantly found in genotypes carrying serotype V. Currently, a trivalent CPS
vaccine is most advanced in clinical development, incorporating the globally dominant
serotypes la, Ib and III [135-137]. These serotypes, although the most pathogenic, represent
only a fraction of the GBS global population. The potential implications of a vaccine targeting

only selected genotypes can be exemplified by the lessons learned from the multi-valent
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pneumococcal vaccine. After its introduction in Europe and North America, vaccine-type
serotypes and associated invasive pneumococcal disease decreased rapidly. However, non-
vaccine-type serotypes and linked disease increased in the years following vaccine
introduction, indicating the importance of continued population surveillance in order to track
serotype replacement [140,141]. Long-term follow-up studies will be essential to understand
how the global GBS population responds to vaccine induced immune selection. Particularly, it
would be interesting to understand if some of the ancient GBS lineages that carry serotypes
included into the vaccine vanish, if escape strains carrying non-vaccine serotypes emerge as
newly dominating lineages and if GBS with zoonotic potential fill the vaccination induced

biological niches.

A central aspect of our phyloproteomic typing tool established in Chapter 4 is its capacity for
inter-laboratory transferability to a different MALDI-TOF MS platform, which is
fundamental for the future application of this method in multi-center epidemiological studies.
A universal typing method that can be applied in different laboratories is a prerequisite for
large-scale epidemiological studies. As demonstrated by our results in Chapter 6, translation
of our method to a microflex MALDI-TOF MS instrument, one of the most widely used
commercial platforms in routine microbiology [144], was unproblematic. We found that on
average 27 of the 28 ribosomal subunit biomarker masses required for our GBS typing
approach can be detected per mass spectrum, which is more than sufficient for classification
of isolates. We believe a central aspect that will facilitate wider implementation of our novel
method is the fact that MALDI-TOF MS instruments are already standard laboratory
equipment at many clinical diagnostic sites undertaking microbiological routine diagnostics or
research projects. We could therefore build on existing infrastructure and implement our

novel method and sample processing workflow without imposing significant additional costs.

Animal hosts act as a potential reservoir for emerging GBS strains that can cause invasive
disease in human. Especially in the context of raw milk [83] or raw fish [81,82] consumption,
the zoonotic potential of S. agalactiae is increasingly acknowledged. Based on the results
reported in Chapter 4, it became soon evident that there are some rsp-profiles that are
indicative of the GBS host origin. Specifically, GBS genotypes with rsp-profile 1 were
exclusively found to be of bovine origin, while rsp-profiles 49 and 13, which were much less
abundant in our collection were indicative for fish and fish or frog origin, respectively. An

interesting addition to these animal GBS genotypes, many of which share very few similarity
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on MLST level with the known human clones, were the 16 WGS from Camelus dromedarius,
seven of which were released in the genome announcement presented in Chapter 5. A
manifold of rsp-profiles (11, 15, 18, 20, 21, 37) found in these isolates were not described in
other hosts yet. This was also reflected by the core-genome phylogenetic analysis, which
places these camel-derived GBS genotypes distinct from all other isolates within the global
collection. These findings confirm that a rsp-based MALDI-TOF MS method can reliably
distinguish between the human GBS genotypes and the novel camel-associated strains and
would therefore serve as an ideal diagnostic tool for monitoring GBS transmission dynamics
between these two hosts. Such epidemiological studies would be of high relevance. Camels
kept as livestock are reportedly increasing in numbers, especially in regions at the Horn of
Africa and the Middle East. The consumption of raw camel milk has gained increased
popularity and is known to be a possible source of infection with zoonotic pathogens [125]. It
remains unclear to what extend GBS strains are circulating in these micro-environments and
whether the respective camels and/or humans serve as reservoirs for genetic recombination
which might lead to the emergence of novel, highly pathogenic clones, similar to ST452 [198]
or ST485, an emerging invasive CC103 clone in China [199,200].

Our results from Chapter 6 pertaining to the novel GBS genotypes that we found at higher
frequency in the animal hosts further underline that our method is highly adequate to rapidly
screen for such genotypes among hundreds of isolates. Among the GBS isolates retrieved
from fish samples were five strains that displayed the novel nrsp-profile 7. Subsequent whole
genome sequencing of one strain confirmed the distinct rsp-profile and identified this strain as
ST931. This sequence type has been described for the first time in a recent study in 2018,
where ST931 was found to be linked to human invasive disease in the Guangxi region in
Southern China [200]. Interestingly, the authors also demonstrated that this genotype
genetically falls within the bovine CC67 cluster, a finding that was confirmed by our ANI
phylogenetic analysis. The fact, that we now detected this bovine-associated strain on fish
samples in Hong Kong is highly intriguing and raises important questions regarding the host
specificity and transmission dynamics of this genotype. Our MALDI-TOF MS tool will serve
as an ideal tool for continuous screening of nrsp-profile7/ST931 strains among fish samples in
the Hong Kong region.

One fish GBS strain displaying rsp-profile 4, which is atypical for so far analyzed fish-
derived isolates that predominantly fall within rsp-profile 5 (54 of 62 isolates), further

exemplifies the utility of our method in screening for rapidly emerging known GBS
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genotypes. The MLST identity of this strain could not be determined due to limited WGS
quality and coverage. However, ANI phylogenetic analysis revealed that this strain belongs to
the CC103 genetic lineage, a group of genotypes of central interest in terms of GBS with
zoonotic potential. ST103 and its closely related clones were initially described as strains
circulating in cows. Both in Europe [201] and China [202], the emerging ST103 strains were
found to replace CC67 as the dominant genotype linked to bovine mastitis. The expansion of
CC103 is not restricted to the bovine host only, with increasing prevalence of CC103 strains
reported in human [200] and fish [124]. Although we cannot distinguish ST103/CC103 from
other ST like ST22 and ST23 that also display rsp-profile 4, we can rapidly identify such
genotypes among fish isolates, that usually fall within rsp-profile 5, or from classical bovine
CC67 strain that display rsp-profile 1. This provides us with a mean to track further the spread
of this genotype.

An intriguing finding of potentially high relevance pertains to the characteristics of the GBS
isolates collected from pig specimens in Hong Kong wet markets. Our preliminary results
demonstrate, that the majority of these strains (13/15) display a novel rsp-profile, hinting
towards the genetic distinctiveness of these genotypes. Little is known about the prevalence of
GBS colonization and disease in Sus scrofa domesticus. Only few studies report the isolation
or characterization of GBS strains from pigs [203,204] and similarly no conclusive data on
human to pig or vice versa transmission of GBS has been described [205,206]. This is
surprising, given the immense economical relevance of the pig industry in many countries.
The recent expansion of global pork trade, namely between the USA and China has raised
concerns regarding the threat of facilitated spread of pathogens [207]. The neglect of
appropriate bio-safety measures combined with dense farming conditions in China, with close
contact of humans, poultry and pigs, have been demonstrated to facilitate the recombination
of pathogens and the emergence of novel strains. This does not only lead to substantial
agricultural losses but can also pose significant public health threats, exemplified by reported
human infection through pig-reservoired influenza A viruses in China [208].

A similar scenario of increased genotype variety and emergence of hypervirulent strains
through human-pig transmission is also conceivable for GBS. In the context of the post GBS
vaccination phase, it can be expected that vanishing GBS genotypes which are targeted by the
multivalent conjugate vaccine will open biological niches, which can accelerate the
emergence of novel, vaccine escape GBS genotypes. Accordingly, large-scale GBS

surveillance studies will be needed to monitor such genotype transmission dynamics. As
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demonstrated by our results from Chapter 6, our MALDI-TOF MS method would meet all the

requirements and provide the required discriminatory power for such a task.
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Chapter 8

Outlook



Within the framework of the WHO malaria vaccine implementation programme (MVIP),
Ghana, Kenya and Malawi will introduce the RTS,S vaccine in the routine immunization
systems of selected geographical areas in 2019. Given the limited vaccine efficacy, RTS,S
will be implemented only as a supporting measure in parallel to conventional vector control
measures. This will provide valuable information regarding the public health usefulness and
feasibility of large-scale deployment of the RTS,S vaccine [36].

Meanwhile, the pursuit for a more effective malaria vaccine will continue. The promising
whole sporozoite based malaria vaccines are under active development and results from first
clinical trials with radiation-attenuated PfSPZ conducted in countries throughout sub-Saharan
Africa including Mali [46], Equatorial Guinea [47] and Tanzania (as presented in Chapter 2)
are now available. The results from the PfSPZ Tanzania trial nurtures hopes that an increased
dose of administered PfSPZ can help increasing the vaccine immunogenicity and confer better
protective efficacy in volunteers. Accordingly, continuing clinical trials are being conducted
in Tanzanian cohorts. One trial (NCT02613520) assesses how administration of a higher dose
(1.8 x 10° PfSPZ) in adults undergoing three immunizations effects immunogenicity and
protective efficacy of the vaccine. Hypothesizing that the magnitude of PfSPZ vaccine
induced immune responses will be higher in younger, less malaria-exposed individuals, the
same trial also assesses vaccination in younger cohorts, including age groups from 11-17
years, 6-10 years, 1-5 years and infants of 6-11 months of age at time of first vaccination
(Jongo et al., manuscript submitted). A follow-up study (NCT03420053), evaluating the
safety, immunogenicity and efficacy of the PfSPZ vaccine in HIV-positive, Tanzanian
volunteers has been completed in September 2018 (manuscript in preparation).

Given the promising results of the radiation-attenuated PfSPZ vaccine, conferring high
protection from homologous CHMI in malaria-naive individuals, the licensure of this vaccine
candidate is on the horizon. In a recent report from the U.S. FDA, the possibility of PfSPZ
vaccine licensure for use in travelers was discussed [209]. An according pre-licensure phase 3
clinical trial is therefore planned for the assessment of the vaccine in a large malaria-naive
cohort (Stephen Hoffman, personal communication). A central question pertains to the
possible implications of an area-wide introduction of the PfSPZ vaccine. Given the multitude
of genetically differing P. falciparum strains circulating in sub-Saharan Africa [210,211], it is
likely that the emergence of vaccine escape strains will be observed following large-scale
vaccine introduction. The clinical trial in Mali has shown that PfSPZ vaccination can confer
some protection against naturally acquired malaria infection through field strains [46].

Potential cross-protection of the PfSPZ vaccine against a non-vaccine strain has also been
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assessed by heterologous CHMI in malaria-naive individuals. One study reported protection
of 4/5 individuals 3 weeks and protection of just 1/10 individuals 24 weeks after last
immunization (5 doses of 2.7 x 10%) [177]. Although a second study reported increased
protection of 5/6 individuals at 33 weeks after last immunization (3 doses of 9 x 10°) [185], it
will require further assessment, if long-lasting protection against non-vaccine strains can be
achieved with the radiation-attenuated PfSPZ vaccine.

A possible way to circumvent this problem could be the development of multi-strain vaccines,
as was done with Theileria parva, an apicomplexan parasite sharing a similar life cycle like P.
falciparum, and known as the cause of East Coast fever. The trivalent, live sporozoite vaccine
against 7. parva consists of a cocktail of three genetically distinct theilerial strains and has
been demonstrated to successfully immunize cattle under chemoprophylaxis against East
African theileriosis [212]. It will need to be assessed in future studies if a re-formulated
PfSPZ vaccine, containing multiple strains of P. falciparum, can confer cross-protective
immunity against field strains.

Besides of the radiation-attenuated PfSPZ vaccine, the genetically attenuated P. falciparum
parasites (GAP) are developed. Despite of being a promising candidate, this vaccine will need
to overcome the administration route of live parasites via mosquito bite, which is
impracticable for mass administration [49]. GMP manufacturing of a cryopreserved P.
falciparum GAP vaccine is therefore planned in collaboration with the biotech company
Sanaria Inc. This will allow clinical trial assessment in the USA and Africa of GAP direct
venous inoculation [213]. Immunization by administration of fully infectious sporozoites in
individuals that are under simultaneous chemoprophylaxis with chloroquine (PfSPZ-CVac) is
also of great future interest. Given that such sporozoites can complete the liver stage before
being killed off in the bloodstream by chloroquine, expectations are that the immune system
is exposed to a broader repertoire of parasite antigens and might be able to more efficiently
mount protective and long-term immune responses against the liver stages of the parasite

[20,48].

Looking ahead, further advances of the MALDI-TOF MS technology in the near future will
potentially allow the interrogation of even broader molecular weight ranges at decreased
measurement error rates. This would significantly enhance the here presented rsp-method, by
increasing the number of GBS rsp that can be detected and by allowing distinction of
molecular mass differences below 400ppm. In addition, novel proteins besides of the rsp

might be identified and integrated in the present scheme as additional biomarkers.
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Collectively, these advances could also facilitate the direct typing of GBS from the source
sample without the need for previous microbial culture, which would significantly increase

the overall speed of the method.

Despite of high initial acquisition costs and requirement for regular maintenance by certified
technicians, MALDI-TOF MS is not restricted to industrialized countries only. Reports from
studies employing MALDI-TOF MS for microbial analysis of environmental or clinical
samples in South Africa [214,215] confirm the suitability of the technology in resource-
limited settings. In a recent study reporting the implementation of a bioMérieux VITEK MS
MALDI-TOF platform for hospital routine identification of bacteria and fungi in Dakar,
Senegal, a comprehensive sample set consisting of close to 2,500 isolates was identified with
high accuracy (94.2 %) at the species level [216]. Interestingly, this study reported S.
agalactiae to occur at higher frequency in Dakar compared to GBS prevalence in France,
reminding us of the persisting lack of GBS epidemiological data from Africa. These
preliminary studies emphasize that the excellent performance of MALDI-TOF MS in terms of
sample turnover has the potential to substantially improve hospital care for patients suffering
from infectious diseases in tropical Africa.

In October 2018, an Axima MALDI-TOF MS platform has been established in joint
collaboration between the Swiss TPH and the Ministry of Health and Social Welfare on Bioko
Island, Equatorial Guinea. This novel equipment will allow the implementation of the
technology in routine clinical diagnostics in collaboration with local hospitals on the island.
With regards to GBS epidemiology studies, it will enable the extension of our rsp-based
genotype monitoring approach to a geographical region with no pre-existing knowledge on
GBS transmission and genotype dynamics. The potential application of MALDI-TOF MS,
especially in tropical Africa, is highly versatile and not restrained to bacterial identification
and typing. Identification of tick species, common vectors of various pathogens in sub-
Saharan Africa [217,218] by MALDI-TOF MS [219] (presented in the Appendix of this
thesis) and the screening of Anopheles mosquitoes for P. falciparum infection [220] are two
intended MALDI-TOF MS applications on Bioko Island.

The application of MALDI-TOF MS for the detection of bovine mastitis pathogens, including
S. agalactiae, from milk samples has been reported [221]. The here presented rsp-based
typing scheme could build on such workflows, allowing for genotype-level resolution

screening of GBS strains. It would be highly relevant to also employ rsp-based MALDI-TOF

132



MS in the rapidly growing camel industry, to routinely monitor circulation of GBS strains in
raw camel milk.

Lastly, in the ongoing study with our collaborators from Hong Kong, the rsp-based MALDI-
TOF MS method will be used for continuous screening for emerging zoonotic GBS strains.
The current GBS isolate pool (#=249) will be significantly increased, with the addition of
more than 1,000 human GBS isolates and more genotypes isolated from animal food samples

which are currently being collected from wet markets (Margaret Ip, personal communication).
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Supplementary Information Text

Methods
Core-genome phylogenetic analysis

Automatic genome annotation of the WGS was performed with the Prokka software tool version
1.12 (1), using a Streptococcus genus database. The core-genome phylogenetic relationships of
the WGS were obtained using EDGAR version 2.2 (2). Briefly, the core-genome was defined by
iterative pairwise comparison of the gene content of each of the selected genomes using the
bidirectional best hits (BBH) with score ratio values as orthology criterion (2). For all
calculations protein BLAST (BLASTp) was used with BLOSUMG62 as similarity matrix (3, 4).
Multiple alignments of each of the 867 orthologous gene set of the core genome were calculated
using the MUSCLE software (5), which equaled 690,132 genes in total. The resulting alignments
were concatenated to one huge alignment (6), which consisted of 212,086,240 amino acid
residues, 266,440 per genome. This alignment was used to construct a FastTree phylogeny (7).

Phylogenetic trees were visualized and edited using the interactive tree of life (iTOL) website (8).

Bacteria cultivation and sample preparation

GBS isolates were stored at -80 °C prior to cultivation. After thawing the isolates on ice, bacterial
material was plated on Columbia Sheep Blood Agar. The plates were then stored at 37 °C in the
incubator for overnight cultivation. Single colonies were transferred to a new agar plate using the
four-quadrant streak method. After repeated overnight cultivation at 37 °C, S. agalactiae colonies
were harvested for sample preparation. The bacteria material was washed repeatedly in TMA
buffer (10mM Tris-HCI (pH 7.8), 30 mM NH4CI, 10 mM MgCl,, and 6 mM 2-mercaptoethanol).
In a next step, the bacterial cells were disrupted using a FastPrep FP120 bead beater in order to
lay open intracellular proteins. To that end, the washed cells were transferred together with 0.1
mm glass beads to a micro tube. The mixture was agitated for multiple short time intervals (20
seconds) at maximum speed, interrupted by cooling intervals (1 minute) on ice. In a last step,
protein fragments smaller than 3,000 Dalton (Da) were removed by filtering of the bacterial
extract with Amicon™ Ultra centrifugal devices. Lastly, the concentrated sample was mixed with
the tenfold volume of ddH,O and 1 pl of the dilution was applied in quadruplicates on a MALDI-
TOF steel target plate. The spotted samples were left to air dry at room temperature and
consequently overlaid with a matrix consisting of a saturated solution of 10 mg sinapic acid in

60% acetonitrile, 40 % ddH,O and 1% TFA.



MALDI-TOF MS analyses

Instrument setup: The MS measurements were carried out using a MALDI-TOF Mass
Spectrometer Axima Confidence machine (Shimadzu-Biotech, Kyoto, Japan) with detection in
the linear positive mode, allowing the interrogation of high molecular weight samples. The
acceleration voltage was set by default to 20 kV with an extraction delay time of 200 ns and a
laser frequency of 50 Hz. The analysis was carried out in the mass range between 4,000 and
25,000 Da. To ensure an even measurement covering the entire area of the sample spot, a netlike
pattern of 100 equally distributed locations was defined. At each of these profiles ten consecutive
laser shots were applied, adding up to 1,000 laser shots per sample spot. The ion gate was set at
3,950 Da and the pulsed extraction optimized at 20,000 Da. Each target plate was externally
calibrated using the reference spectra of Escherichia coli strain DH5a.

Mass spectra processing and internal calibration:

The individual mass fingerprints were averaged and the spectra further processed with the
Launchpad 2.8 software (Shimadzu-Biotech, Kyoto, Japan). The advanced scenario setting was
chosen for peak processing, with a defined peak width of 80 chans, smoothing filter width of 50
chans and baseline filter width of 500 chans. An adaptive voltage threshold, which roughly
followed the signal noise level, was defined and the threshold offset and threshold response set to
0.008 and 1.000 respectively. Internal calibration with 800 ppm was carried out with
MALDIquant (9), using 10 rsp masses (3 mass alleles of L6, 2 mass alleles of L36 and S12, 1
mass allele of L14, L29 and S15) that altogether display mass values distributed over a wide mass
range (4,425 to 19,293 Da). An ascii file containing the recalibrated protein mass values and

corresponding intensities was automatically generated for every mass spectrum.
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variability of 28 rsp revealed the occurrence of six dominat rsp-profiles (1-6) in the global GBS population.



Additional data table S1 (separate file)

Metadata of 796 whole genome sequenced Group B Streptococcus (GBS) strains used in this
study. ST: multi-locus sequence type; SLV: single-locus variant; CC: clonal complex; Alp: alpha-
like protein; Sip: surface immunogenic protein; Lmb: laminin-binding protein; BibA: group B
Streptococcus immunogenic bacterial adhesin protein.

Additional data table S6 (separate file)

Metadata of 248 Group B Streptococcus (GBS) in-house isolates and 8 GBS isolates from an
external laboratory that were subtyped by MALDI-TOF MS in this study.

Additional data table S7 (separate file)

Protein queries used for in silico identification of major Group B Streptococcus surface protein
variants.

References

1. Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinforma Oxf Engl 30(14):2068-
2069.

2. BlomJ, etal. (2016) EDGAR 2.0: an enhanced software platform for comparative gene content
analyses. Nucleic Acids Res 44(W1):W22-28.

3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J
Mol Biol 215(3):403-410.

4. Henikoff S, Henikoff JG (1992) Amino acid substitution matrices from protein blocks. Proc Natl Acad
Sci U S A 89(22):10915-10919.

5. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput.
Nucleic Acids Res 32(5):1792-1797.

6. Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and
ambiguously aligned blocks from protein sequence alignments. Syst Biol 56(4):564-577.

7. Price MN, Dehal PS, Arkin AP (2009) FastTree: Computing Large Minimum Evolution Trees with
Profiles instead of a Distance Matrix. Mol Biol Evol 26(7):1641-1650.

8. Letunic I, Bork P (2016) Interactive tree of life (iTOL) v3: an online tool for the display and
annotation of phylogenetic and other trees. Nucleic Acids Res 44(W1):W242-245.

9. Gibb S, Strimmer K (2012) MALDIquant: a versatile R package for the analysis of mass spectrometry
data. Bioinforma Oxf Engl 28(17):2270-2271.

10. Jolley KA, Maiden MC (2010) BIGSdb: Scalable analysis of bacterial genome variation at the
population level. BMC Bioinformatics 11(1):595.



B: Matrix-assisted laser desorption/ionization time of
flight mass spectrometry for comprehensive

indexing of East African ixodid tick species

This appendix section contains the following publication:

Julian Rothen, Naftaly Githaka, Esther Kanduma, Cassandra Olds, Valentin Pfliiger, Stephen Mwaura, Richard
Bishop, Claudia Daubenberger. “Matrix-assisted laser desorption/ionization time of flight mass spectrometry for
comprehensive indexing of East African ixodid tick species” 2016. Parasites & Vectors.



Rothen et al. Parasites & Vectors (2016) 9:151

DOI 10.1186/513071-016-1424-6 Parasites & Vectors

RESEARCH Open Access

Matrix-assisted laser desorption/ionization @
time of flight mass spectrometry for
comprehensive indexing of East African

ixodid tick species

Julian Rothen®*"", Naftaly Githaka'", Esther G. Kanduma®”, Cassandra Olds®, Valentin Pfliiger”, Stephen Mwaura',
Richard P. Bishop' and Claudia Daubenberger®?

Abstract

Background: The tick population of Africa includes several important genera belonging to the family Ixodidae.
Many of these ticks are vectors of protozoan and rickettsial pathogens including Theileria parva that causes East
Coast fever, a debilitating cattle disease endemic to eastern, central and southern Africa. Effective surveillance of
tick-borne pathogens depends on accurate identification and mapping of their tick vectors. A simple and reproducible
technique for rapid and reliable differentiation of large numbers of closely related field-collected ticks, which are often
difficult and tedious to discriminate purely by morphology, will be an essential component of this strategy. Matrix-assisted
laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) is increasingly becoming a useful tool in
arthropod identification and has the potential to overcome the limitations of classical morphology-based species
identification. In this study, we applied MALDI-TOF MS to a collection of laboratory and field ticks found in
Eastern Africa. The objective was to determine the utility of this proteomic tool for reliable species identification
of closely related afrotropical ticks.

Methods: A total of 398 ixodid ticks from laboratory maintained colonies, extracted from the hides of animals or
systematically collected from vegetation in Kenya, Sudan and Zimbabwe were analyzed in the present investigation. The
cytochrome ¢ oxidase | (COI) genes from 33 specimens were sequenced to confirm the tentatively assigned specimen
taxa identity on the basis of morphological analyses. Subsequently, the legs of ticks were homogenized and analyzed by
MALDI-TOF MS. A collection of reference mass spectra, based on the mass profiles of four individual ticks per species,
was developed and deposited in the spectral database SARAMIS™. The ability of these superspectra (SSp.) to identify and
reliably validate a set of ticks was demonstrated using the remaining individual 333 ticks.
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Results: Ultimately, ten different tick species within the genera Amblyomma, Hyalomma, Rhipicephalus and Rhipicephalus
(Boophilus) based on molecular COI typing and morphology were included into the study analysis. The robustness of the
12 distinct SSp. developed here proved to be very high, with 319 out of 333 ticks used for validation identified correctly
at species level. Moreover, these novel SSp. allowed for diagnostic specificity of 99.7 %. The failure of species identification
for 14 ticks was directly linked to low quality mass spectra, most likely due to poor specimen quality that was received in

the laboratory before sample preparation.

distributions and host preferences.

Hyalomma, Rhipicephalus

Conclusions: Our results are consistent with earlier studies demonstrating the potential of MALDI-TOF MS as a reliable
tool for differentiating ticks originating from the field, especially females that are difficult to identify after blood feeding.
This work provides further evidence of the utility of MALDI-TOF MS to identify morphologically and genetically highly
similar tick species and indicates the potential of this tool for large-scale monitoring of tick populations, species

Keywords: MALDI-TOF MS, Ticks, Species identification, Vector epidemiology, COI, Amblyomma, Boophilus,

Background

As obligate hematophagous organisms, ticks can ac-
quire and transmit pathogenic microorganisms such as
eukaryotic parasites, bacteria, viruses and fungi both
through vertical transmission or when feeding on their
hosts [1]. Tick-borne diseases (TBDs) cause significant
economic losses to the cattle industry in tropical and
subtropical regions of the world [2]. Some tick species
are capable of building up focally highly dense popula-
tions, causing additional production losses in farm ani-
mals from irritation, skin damage and accompanying
chronic inflammation, blood loss and in some cases,
secondary infections [1, 3]. In most of Eastern Africa,
several ixodid tick species share overlapping habitats
and multiple tick infestations in livestock is frequently
observed [4]. The control of TBDs can be improved
and targeted appropriately by accurate monitoring of
tick vectors. This has traditionally been done by exam-
ining morphological features using a light microscope,
and with the aid of taxonomical descriptions and illus-
trations [4, 5]. Unfortunately, the expert knowledge
required for this task is rare in most settings where
TBDs are endemic [4]. In addition, damaged or imma-
ture tick stages, or replete female ticks are often diffi-
cult to identify accurately based on morphological
features alone [6]. Molecular approaches like sequen-
cing of the cytochrome ¢ oxidase subunit I (COI), the
12S rDNA or the internal transcribed spacer 2 (ITS2)
can overcome the limitations of conventional tick tax-
onomy. Due to the labor, time and costs involved in
DNA extraction, PCR amplification, purification and
nucleotide sequencing, this approach is typically limited
to well-equipped laboratories [7, 8]. When COI, 12S or
ITS reference sequences are scarce or missing from
public nucleotide databases, it is difficult to conclu-
sively resolve the species level thus non-identical se-
quences may remain unidentifiable [9]. Additionally,

public databases are known to sometimes contain mis-
identified species, and sequences showing errors or ob-
tained from contaminated samples resulting in inaccurate
classification [10]. Hence, a marker-based identification
system is useful to supplement morphological species
identification and support taxonomy, either as corroborat-
ing evidence for existing hypotheses or as a starting point
for further testing using additional techniques [11].

Matrix assisted laser desorption/ionization time of
flight mass spectrometry (MALDI-TOF MS) is emerging
as an alternative to both morphology and PCR-based
typing for identifying disease vectors such as mosquitoes
[12, 13], tsetse fly [14] and ticks [15, 16]. MALDI-TOF
MS makes use of a small quantity of whole organism
material, and thus can identify damaged tick specimens
or immature stages [16]. As a diagnostic technique,
MALDI-TOF MS is both cost-effective and rapid, can be
performed without in depth technical knowledge and
the data results have been found to be highly reprodu-
cible [17]. In disease endemic areas, MALDI-TOF MS
could assist in resolving questions that are difficult to
answer with traditional morphological or current mo-
lecular based typing methods. For example, the unclear
epidemiological status of the two closely related tick
species Rhipicephalus simus and Rhipicephalus praetex-
tatus in Kenya, where COI sequencing of field samples
strongly indicates occurrence of R. simus, although this
species is currently thought to be confined to Southern
Africa [4]. It is possible that ixodid species other than
Rhipicephalus appendiculatus may transmit Theileria
parva in Eastern Africa, because number of Rhipicepha-
lus species on domestic animals is greater than previ-
ously thought (E. Kanduma and R. Bishop, unpublished
data), but more in-depth, higher resolution analyses of
both tick vectors and the pathogens they transmit are
necessary to confirm this. Moreover, the vector of
Theileria sp. (buffalo) a species that is infective to cattle
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at livestock-wildlife interface with unknown conse-
quences in respect of pathology, especially in the co-
infection situation is currently unknown [18]. These and
similar questions require resolution especially in the
context of the epidemiology of theileriosis at the
livestock-wildlife interface [19, 20]. Methods endowed
with higher resolution and throughput ideally for both
the tick vectors and the pathogens that they transmit
will be required in future to follow tick borne disease
epidemiology, particularly in times of rapid climate
changes in these regions [18]. The objective of this study
was to extend the application of MALDI-TOF as a high-
throughput tick typing method [15, 16] to a collection of
Afrotropical ixodid ticks obtained from Eastern Africa.
We envisage that the data from our tick collection will
serve as a reference for indexing the multiple ixodid tick
species that frequently occur sympatrically in Africa.

Methods

Laboratory reared ticks

A total of 398 adult ticks built the basis of this study.
One hundred fifty six ticks were obtained from colonies
that had been bred and maintained as closed genetic
stocks at the International Livestock Research Institute
(ILRI) Tick Unit. These were reared and managed as de-
scribed by Bailey [21] and Irvin and Brocklesby [22].
With the exception of a Hyalomma sp. whose identity
was uncertain until recently, the history and identity of
all other tick species kept at the unit were well documented
(Table 1). The laboratory maintained colonies ticks con-
sisted of Ambylomma variegatum (21), Hyalomma sp. (16),
R. appendiculatus (40 (Muguga colony) and 9 (Kiambu col-
ony)), Rhipicephalus (Boophilus) decoloratus (22), Rhipice-
Pphalus (Boophilus) microplus (21) and Rhipicephalus evertsi
evertsi (27). Ticks were transferred to 70 % ethanol and
shipped at room temperature to Basel for the MALDI-TOF
MS analysis and genomic DNA extraction.

Field ticks and identification by morphological
characteristics

Two hundred forty two field ticks were either plucked dir-
ectly from animal hosts (cattle/sheep) or were collected
from pastures/vegetation. One hundred sixty of these ticks
were collected 2014 at various sites in Kenya (Fig. 1). The
remaining 82 specimens were collected from multiple lo-
calities within East Africa during a study investigating the
population structure of R. appendiculatus in the field [23]
(Fig. 1). Ticks were assigned to sex and species as de-
scribed by Hoogstraal (1956) and Walker (2000 and 2003)
[4, 5] and stored in 70 % ethanol and kept at 4 °C prior to
shipping to Basel. Due to the high proportion (242/398) of
field ticks and the inclusion of both male and female spec-
imens, we expected our collection to reliably reflect intra-
species physiological and molecular diversity.
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Molecular COIl gene typing

DNA extraction & PCR

To confirm the morphologically assigned species iden-
tities of field ticks and to check for potential molecular
differences to laboratory ticks, specimens of both origins
were subjected to molecular analysis. A tick was ran-
domly chosen from the library and thoroughly rinsed
with distilled water in order to remove any ethanol resi-
dues. The tick legs were detached with a scalpel and
stored in 70 % ethanol for later MALDI-TOF MS ana-
lysis. The tick body was transferred to a 1.5 ml micro-
centrifuge tube and placed in liquid nitrogen for 5 min.
Using a polypropylene pestle (Sigma-Aldrich), the frozen
tick body was thoroughly grinded to powder. Whole gen-
omic DNA was extracted using the QIAGEN® DNeasy*
Blood & Tissue Kit (Qiagen GmbH, Germany). One hun-
dred eighty microliter buffer ATL and 20 ul proteinase K
were added to the grinded tick body and the mixture incu-
bated overnight at 56 °C to ensure complete lysis of the
tissue. The further extraction steps were carried out
according to the manufacturers’ protocol. The final con-
centration of extracted gDNA was determined with a
spectrophotometer (WPA Lightwave II, Biochrom). Cyto-
chrome c¢ oxidase subunit I (COI) gene sequences of indi-
vidual ticks were obtained by PCR amplification using the
forward primer LCO149021 (5'-GGTCAACAAATCATA
AAGATATTGG-3") and reverse primer HC02198 (5" TA
AACTTCAGGGTGACCAAAAAATCA-3") [24]. PCR was
performed in a 50 pl reaction consisting of 5 ul 10x PCR
Buffer (containing 10 mM MgCl,), 1 ul ANTP mix, 1 pl
MgCl,, 2.5U HotStarTag DNA Polymerase (Qiagen GmbH,
Germany), 1 pl each of forward and reverse primers and 25
to 500 ng of tick gDNA as a template. The final volume of
the reaction mixture was made up to 50 pl with nuclease-
free water (Thermo Scientific, Germany). The PCR condi-
tions consisted of an initial heat activation step at 95 °C for
15 min followed by 35 cycles of denaturation at 94 °C
for 1 min, annealing at 45 °C for 1 min and extension
at 72 °C for 1 min. The final extension was performed
for 10 min at 72 °C. Per run, between 5 to 15 reactions
were amplified, including two reactions where the
gDNA template was omitted and compensated with
nuclease-free water, serving as negative controls. The
quality of the PCR products was determined by running
5 pl of stained (DNA-Dye NonTox, PanReac/Appli-
Chem) DNA on a 1.0 % agarose gel. The bands were
visualized and examined with the GelDoc™ EZ Imager
(BioRAD). The amplified COI products were purified
using the QIAquick PCR Purification Kit (Qiagen
GmbH, Germany) following the manufacturers’ proto-
col. DNA samples were eluted with 40 pl elution buffer
(10 mM TrisCl). The COI gene was sequenced using
the gene specific forward and reverse primer pair used
for PCR amplification at Microsynth AG, Switzerland.
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Table 1 Overview of 398 ticks that built the basis of this study
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Morphologically assigned species name Quantity Sex Geographical origin Source

Amblyomma gemma 21 4F 15M,2ND Kenya Vegetation & Animal
Amblyomma hebraeum 4 2F 1M 1ND Zimbabwe Vegetation
Amblyomma variegatum 21 4F 15M,2ND Kenya Lab colony
Amblyomma variegatum 19 5F 14 M Kenya Vegetation & Animal
Hyalomma anatolicum anatolicum 13 10F, 1M, 2ND Sudan Vegetation
Hyalomma dromedarii 3 2M, 1 ND Kenya Vegetation & Animal
Hyalomma marginatum rufipes 18 5F 11 M, 2ND Kenya Vegetation & Animal
Hyalomma truncatum 14 5F6M 3ND Kenya Vegetation & Animal
Hyalomma sp. 16 8F,6M,2ND Kenya Lab colony
Rhipicephalus (Boophilus) decoloratus 22 21F, 1M Kenya Lab colony
Rhipicephalus (Boophilus) decoloratus 19 19F Kenya & Sudan Animal
Rhipicephalus (Boophilus) microplus 21 21F Kenya Lab colony
Rhipicephalus (Boophilus) microplus 3 3F Kenya Animal
Rhipicephalus appendiculatus 40 16 F, 23 M, 1 ND Kenya Lab colony (Muguga)
Rhipicephalus appendiculatus 38 15F, 22 M, 1 ND Kenya Vegetation & Animal
Rhipicephalus appendiculatus 9 8F,1ND Kenya Lab colony (Kiambu)
Rhipicephalus evertsi evertsi 27 10F, 16 M, 1 ND Kenya Lab colony
Rhipicephalus evertsi evertsi 28 7F,20 M, 1 ND Kenya Vegetation & Animal
Rhipicephalus praetextatus 8 5F,2M,1ND Kenya Vegetation & Animal
Rhipicephalus pulchellus 37 21 F, 14 M, 2ND Kenya Vegetation & Animal
Rhipicephalus simus 17 8F,7M,2ND Kenya Vegetation & Animal

Total 398

ND sex not determined, M male, F female

Data analysis: sequence editing and multiple alignments
COI sequence chromatograms were visually inspected
and manually edited using Seqtrace [25]. Using the
Molecular Evolutionary Genetic Analysis (MEGA)
software version 6.0 [26], consensus sequences were
generated from a forward and reverse sequence for
each of the COI PCR products. Species identity was
confirmed by matching of the consensus sequences
with reference data deposited in the NCBI GenBank
[27] and/or the BOLD database [28], a barcoding data-
base that is a component of the Tree of Life project
and contains only COI nucleotide sequences. A posi-
tive match with a GenBank record was defined as
more than 95 % query coverage and > 97 % identity. A
positive match with a record on BOLD was declared at
identity values > 97 %. Multiple sequence alignment
analysis of all consensus sequences was performed
using the MUSCLE tool in MEGA. The nucleotide
sequences were trimmed to around 680 bp and the
phylogenetic analyses computed based on maximum
likelihood algorithm and the tree file exported to
FigTree [29] for final editing.

MALDI-TOF MS analysis of ticks

Sample preparation

The sample processing protocol has been adopted from
previous studies [15, 30] and modified accordingly.
Specimens were removed from the library, rinsed once
with distilled water and dried on absorbent paper. De-
pending on the size of the tick, two to eight legs were
detached with a scalpel and placed in a 1.5 ml micro-
centrifuge tube containing 10 pl of 25 % formic acid.
The samples were homogenized using a stainless steel
micropestle (LLG Labware, Switzerland) powered by a
portable drilling machine for 30 s. The homogenate
was then centrifuged at 10,000 rpm for 1 min and 1 pl
of the supernatant transferred into a microcentrifuge
tube containing 8 pl of matrix solution (saturated sina-
pinic acid, 60 % acetonitrile, 40 % high-performance li-
quid chromatography (HPLC)-grade water and 0.3 %
trifluoroacetic acid). After thoroughly mixing, the solu-
tion was spotted in quadruplicates (1 pl each) on a steel
target plate (Mabritec AG, Basel, Switzerland). The spots
were allowed to dry for several minutes until
crystallization of the matrix/analyte mixture was complete
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Fig. 1 Geographical origin of ticks used for MALDI-TOF MS analysis in Kenya. The collection sites of the ambiguous Hyalomma species and the

specimens obtained from outside Kenya are not shown

and the target plate thereafter transferred to the MALDI-
TOF MS instrument.

MALDI-TOF parameters

The MS measurements were carried out using a
MALDI-TOF Mass Spectrometry Axima™ Confidence
machine (Shimadzu-Biotech Corp., Kyoto, Japan) with
detection in the linear positive mode, allowing the inter-
rogation of high molecular weight samples. The acceler-
ation voltage was set by default to 20 kV with an
extraction delay time of 200 ns and a laser frequency of

50 Hz. The analysis was carried out in the mass range
between 4000 and 20,000 Da. To ensure an even meas-
urement covering the entire area of the sample spot, a
netlike pattern of 100 equally distributed locations was
defined. At 50 of these profiles, 10 consecutive laser
shots were applied, adding up to 500 laser shots per
sample spot. The ion gate was set at 3900 Da and the
pulsed extraction optimized at 12,000 Da. The generated
raw spectra were processed with the Launchpad™ version
2.9 software (Shimadzu-Biotech Corp., Kyoto, Japan)
using the following settings: the advanced scenario was
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chosen from the parent peak cleanup menu, peak width
was set to 80 channels, smoothing filter width to 50
channels, baseline filter width to 500 channels and the
threshold apex was chosen as the peak detection
method. The threshold apex peak detection was set as a
dynamic type and the offset was set to 0.020 mV with a
response factor of 1.2. The processed spectra were
exported as peak lists with m/z values for each peak
and signal intensity in the ASCII format. Each target
plate was externally calibrated using the reference spec-
tra of Escherichia coli strain DH5a.

Spectral analysis: superspectrum design & validation

The generated mass spectra were exported to Launch-
pad™, quality-checked by eye and repeat measurements
carried out if necessary. Mass spectra of reviewed spec-
tra were then transferred in ASCII format to the spectral
archive and microbial identification system (SARAMIS™)
(AnagnosTec, Potsdam-Golm, Germany). A biomarker
mass pattern, called superspectrum (SSp.) was calculated
for each tick species using the SARAMIS™ SuperSpec-
tra™ tool. To that end, the quadruplicate mass lists of
four ticks were consolidated, peaks with a relative inten-
sity below 1 % removed and average masses calculated
with an error of 800 ppm. Masses of high species specifi-
city were determined by comparison between the differ-
ent tick SSp. and weighted manually.

In the validation step, using the SARAMIS™ identi-
fication tool, quadruplicate mass spectra of the
remaining ticks were matched against the previously
designed reference superspectra. A match between a
SSp. and acquired mass spectra was regarded as posi-
tive at 75 % identity or higher. Accordingly, each
mass spectrum achieved either a single match, shar-
ing 275 % identity with only one SSp., a multiple
match if sharing > 75 % identity with more than one
SSp., or no match if the 75 % identity threshold with
no SSp. was reached. In case of a multiple match,
the SSp. achieving the highest identity score was as-
sumed the valid match. Subsequently, a given tick
was assigned a final ID (i.e. species identification)
when two criteria were met: (1) at least one of the
four mass spectra matched to a SSp. and (2) assigned
matches amongst the four mass spectra were not in
conflict with each other.

Ethical statement

ILRI’s Institutional Animal Care and Use Committee
(IACUC) governed the use of cattle and rabbits for the
maintenance of the lab tick colonies (approval no.
2010.1). The collection of field ticks did not involve en-
dangered or protected species.
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Results

Morphological identification of field ticks

Morphological identification grouped the ticks collected
from vegetation and animals into 14 different species
(Table 1). While five of these species were already repre-
sented by the laboratory colonies, nine species were exclu-
sively covered by field ticks only. These species included
Amblyomma gemma (21), Amblyomma hebraeum (4),
Hyalomma anatolicum anatolicum (13), Hyalomma dro-
medarii (3), Hyalomma marginatum rufipes (18), Hya-
lomma truncatum (14), R. praetextatus (8), Rhipicephalus
pulchellus (37) and R. simus (17).

Laboratory reared and field ticks combined, the 398
ticks grouped into 14 species within three genera, namely
Amblyomma (3), Hyalomma (4) and Rhipicephalus (5)/
Rhipicephalus (Boophilus) (2). 51.3 % (204/398) of the
ticks belonged to the genus Rhipicephalus, 16.3 % (65/
398) to Rhipicephalus (Boophilus), 16.3 % (65/398) to
Amblyomma and 16.1 % (64/398) to Hyalomma. Six tick
species including R. appendiculatus (87), R. evertsi evertsi
(55), R. (B.) decoloratus (41), A. variegatum (40) and R.
pulchellus (37) represented 65.3 % of the collection
(Table 1).

COI gene sequencing

For a total of 33 ticks, COI gene sequences were ob-
tained (Table 2). No unspecific amplification occurred
for the negative controls included in each PCR amplifi-
cation run. The sequenced amplicons - with the excep-
tion of three ticks where no consensus sequence could
be determined - were all approximately 700 bp in size,
and the sequences were used for comparison against en-
tries at GenBank and/or BOLD. Since there are no COI
gene sequences for A. gemma currently deposited in
GenBank, specimen identity for these ticks was assigned
solely based on the BOLD entries. Two ticks morpho-
logically identified as A. hebraeum matched clearly with
reference records of A. gemma in the BOLD database
(identity scores of 100 and 99.70 %). At the same time,
the identity shared with NCBI reference sequences for
A. hebraeum was only 89 %. The whole group of four
specimens morphologically determined as A. hebraeum,
were henceforth assigned as A. gemma. The morpho-
logically unidentified Hyalomma sp. was clearly deter-
mined as H. dromedarii, with four COI sequenced ticks
matching with high scores to the respective reference re-
cords in both databases. The species designation was
adopted accordingly for the further course of this study.
Two members of the morphologically identified R. simus
ticks both matched with the R. simus reference sequence
(AF132840.1) present in NCBI with a score of 92 % (data
not shown) and with a slightly higher score (94.5 %) to
R. praetextatus in the BOLD database. Higher molecular
identity (99 % with only 67 % query cover) was achieved



Rothen et al. Parasites & Vectors (2016) 9:151

Table 2 Tabular overview of 33 ticks additionally identified by COI molecular typing
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Morphological identification  BOLD identification

GenBank identification

Tick ID  COI gene length [bp]  Origin Species ID Species ID (Identity) Species ID (Accession Nr.) Identity
154 711 Field A. gemma A. gemma (99.80 %) no reliabe ID
183 688 Field A. gemma A. gemma (100 %) no reliabe ID
32 687 Field A. hebraeum A. gemma (100 %) no reliabe ID
109 686 Field A. hebraeum A. gemma (99.70 %) no reliabe ID
36 692 Lab A. variegatum A. variegatum (100 %) A. variegatum (GU062743.1) 97 %
86 651° Field A. variegatum A. variegatum (99.70 %) A. variegatum (GU062743.1) 99 %
242 702 Lab A. variegatum A. variegatum (100 %) A. variegatum (GU062743.1) 97 %
27 688 Field H. dromedarii H. dromedarii (100 %) H. dromedarii (AJ437071.1) 99 %
74 688 Field H. dromedarii H. dromedarii (100 %) H. dromedarii (AJ437061.1) 99 %
118 680 Field H. dromedarii H. dromedarii (100 %) H. dromedarii (AJ437071.1) 99 %
34 688 Lab H. sp. H. dromedarii (100 %) H. dromedarii (AJ437061.1) 99 %
112 686 Lab H. sp. H. dromedarii (100 %) H. dromedarii (AJ437061.1) 99 %
194 680 Lab H. sp. H. dromedarii (100 %) H. dromedarii (AJ437061.1) 99 %
207 686 Lab H. sp. H. dromedarii (100 %) H. dromedarii (AJ437061.1) 99 %
139 689 Field H. m. rufipes H. m. rufipes (99.84 %) H. m. rufipes (AJ437100.1) 99 %
H. truncatum (AJ437088.1) 99 %
359 688 Field H. m. rufipes H. m. rufipes (99.12 %) H. m. rufipes (AJ437095.1) 99 %
72 684 Field H. truncatum H. truncatum (99 %) H. truncatum (AJ437084.1) 97 %
361 555° Field H. truncatum H. truncatum (98 %) H. truncatum (AJ437084.1) 97 %
38 693 Lab (Kiambu)  R. appendiculatus R. appendiculatus (99.50 %) R. appendiculatus (AF132833.1) 97 %
121 687 Lab (Muguga) R. appendiculatus R. appendiculatus (99.50 %) R. appendiculatus (AF132833.1) 98 %
198 679 Lab (Muguga) R. appendiculatus R. appendiculatus (99.50 %) R. appendiculatus (AF132833.1) 98 %
225 687 Field R. appendiculatus R. appendiculatus (99.85 %) R. appendiculatus (AF132833.1) 99 %
146 673 Field R. (B.) decoloratus R. (B.) decoloratus (100 %)  R. (B) decoloratus (AF132826.1) 99 %
278 690 Lab R. (B.) decoloratus R. (B.) decoloratus (99.85 %) R. (B.) decoloratus (AF132826.1) 99 %
165 5857 Lab R. (B.) microplus R. (B.) microplus (100 %) R. (B.) microplus (KC503261.1) 100 %
377 689 Field R. (B.) microplus R. (B.) microplus (100 %) R. (B.) microplus (KC503261.1) 99 %
170 694 Field R. evertsi evertsi R. evertsi evertsi (100 %) R. evertsi evertsi (AF132835.1) 98 %
275 688 Lab R. evertsi evertsi R. evertsi evertsi (100 %) R. evertsi evertsi (AF132835.1) 98 %
370 688 Field R. praetextatus no reliabe ID no reliabe ID
396 702 Field R. praetextatus no reliabe ID no reliabe ID
397 702 Field R. pulchellus R. pulchellus (98 %) R. pulchellus (AY008682.1) 99 %
29 701 Field R. simus no reliabe 1D no reliabe ID
115 690 Field R. simus no reliabe ID no reliabe ID

“no consensus sequence

Marked in bold: Ticks later used for SSp. design
No reliable ID: Identity with top match <97 %

with deposited partial COI gene sequences (472 bp) of
Rhipicephalus muhsamae. The two ticks morphologic-
ally identified as R. praetextatus matched with a rela-
tively high identity of 96 % (data not shown) to a R
simus record on NCBI and with 100 % identity to un-
published R. praetextatus records on BOLD. Given these
uncertain molecular results and the limited reference re-
cords available, the specimens of the R simus and R

praetextatus batch were merged to one group and the
species designation changed to R. simus group. Extrac-
tion of DNA qualitatively sufficient for COI gene se-
quencing failed with all specimens of H. anatolicum
anatolicum. The morphologically assigned species identity
of these ticks could therefore not be confirmed on mo-
lecular basis. The COI gene sequence of a tick (ID 139,
Table 2) morphologically identified as H. marginatum
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rufipes was identified with equal score as H. marginatum
rufipes and H. truncatum on GenBank. Since the same
COI sequence matched highest to H. marginatum rufipes
record on the BOLD database, the species identity as ini-
tially determined on a morphological basis was assumed
correct. Taking together the molecular results, all ticks
morphologically identified as A. hebraeum, Hyalomma
sp., R. simus and R. praetextatus were reclassified to A.
gemma, H. dromedarii and R. simus group, respectively.
The species identity of H. anatolicum anatolicum could
not be confirmed due to insufficient quality of genomic
DNA. All the remaining tick species that were assigned
morphologically were confirmed by our molecular
analysis.

MALDI-TOF MS analysis

Spectra quality

A total of 1592 single mass spectra were generated, cor-
responding to 398 ticks measured in quadruplicate.
Inadequate spectral quality was assessed visually and ac-
cordingly 55 ticks were re-measured and integrated into
the sample set. Seventeen ticks were excluded from the
study after the first MALDI-TOF MS measurement since
the poor overall state of the specimens did not allow for
the generation of qualitatively adequate mass spectra.
Among the excluded ticks were four ticks of the R. simus
group batch that were partially overgrown by fungus. The
entire collection (13 specimens) of H. anatolicum anatoli-
cum for which also preceding DNA extraction had failed,
were stored in leaky microtubes and as a result completely
desiccated. The remaining 1524 mass spectra (381 ticks)
used for the subsequent analyses presented a good signal-
to-noise ratio and clear protein peaks, mostly distributed
between 4000 to 13,000 Da (Additional file 1: Figure S1).
The number of protein peaks per spectrum ranged from
14 to 145, with an average peak count of 42.5.

Intra species reproducibility of mass spectra

Visual inspection of spectral profiles revealed a generally
highly similar mass fingerprint shared between individ-
uals of the same species. Simultaneously, mass spectra
were still heterogeneous on species level with missing or
exclusive mass peaks only present in certain specimens
or spectral profiles (Fig. 2). However, comparative ana-
lysis of the spectral profiles with SARAMIS™ confirmed
that few major protein peaks remained highly conserved
within a given species (Fig. 2). A significant difference
between the mass spectra of male and female ticks of
the same species could not be observed. This is in line
with what has been reported in other studies [31, 32].

Inter species specificity of mass spectra
To assess the interspecies specificity of the mass spectra
generated by MALDI-TOF MS, the spectral profiles of
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the previous molecularly identified 33 ticks were sub-
jected to cluster analysis (Fig. 3). As expected, the spec-
tra derived from the same tick e.g. the technical
replicates each clustered together in closest proximity.
This was not the case for the mass profiles of just one
tick (specimen no. 029). Importantly, within this set of
ticks, all spectra derived from specimens of the same
species seemed to share distinct masses that separated
them clearly from the remaining tick species.

Definition of superspectra identifying East African tick
species

After COI molecular and MALDI-TOF MS analysis, our
specimen collection was slightly reduced from 398 to
381 ticks, now grouping into ten different species and
the ambiguous R. simus group. Incorporating these
results, SSp. were designed from a total of 48 ticks
(Table 3). The mass profiles derived from the Kiambu
laboratory tick strain that has been maintained for many
years at the ILRI tick unit showed consistently high devi-
ations from the other R appendiculatus profiles (indi-
cated in Fig. 3). This lead us to define a distinct SSp.
designated as R. appendiculatus 11 exclusively covering
this batch of ticks. The final 12 SSp. designed in this
study were based on 192 mass spectra of 48 individual
ticks and consisted of 14 to 30 individual protein masses
(Table 3). In addition to including 24 COI typed speci-
mens to the SSp. design, we also incorporated ticks rep-
resentative of the diversity within a given species. This
led to the inclusion of both field and laboratory ticks in
some cases and to the inclusion of ticks with distinct
mass patterns in other cases.

Validation of defined superspectra for tick identification
After removal of the 48 ticks used to build the reference
spectra, 333 ticks remained for the validation step of the
generated SSp. Our approach failed to assign an ID to
13 specimens, 319 ticks were correctly identified and
only one tick was assigned a wrong ID. This corre-
sponded to an overall sensitivity of 96.1 % and a specifi-
city of 99.7 % (Table 4). Among the correctly identified
ticks, 182 or 57.1 % matched with the correct SSp. in all
four acquired mass spectra (indicated as 4x CC in Table 4).
Sixty-six (20.7 %) ticks matched with three mass spectra
to the correct SSp. while one mass spectrum resulted in
no match. Twenty-three (7.2 %) ticks matched with two
mass spectra to the correct SSp. while two mass spectra
achieved no match. Nineteen (6.0 %) ticks matched with
three mass spectra to the correct SSp. while one mass
spectrum reached multiple matches, with the correct SSp.
as the top match. The remaining 29 (9.1 %) ticks were
positively identified, with their mass spectra matching in
other combinations (indicated as “other” in Table 4).
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Among the successfully identified ticks, the sensitivity
of our approach was lowest for A. gemma (81 %) where
a total of 21 ticks were used for validation and the R
appendiculatus ticks derived from the Kiambu stock
(80 %), where only five ticks were used for validation.
The sole tick that was assigned a false species ID, was a
specimen morphologically identified as R. evertsi evertsi.
While three of this tick’s mass spectra did not achieve a
match at all, one mass spectrum was marginally similar
(78 %, data not shown) to the R. simus group SSp. The
mass spectra of the 13 ticks that could not be assigned
to any SSp. and the spectrum of the wrongly assigned
tick were inspected visually to assess the spectral quality.
It appeared that most spectra displayed alterations like
distorted or shifted mass peaks. The species identity of
the wrongly identified R. evertsi evertsi specimen could
not be verified on a molecular basis, since the extracted
gDNA was not qualitatively sufficient for PCR. Three

ticks with no SSp. ID (1x H. dromedarii and 2x A.
gemma) were subjected to molecular COI analysis. The
morphologically assigned species identities of all three
specimens (Fig. 4; tick no. 95, 60 and 30) were con-
firmed on molecular basis.

The 48 ticks initially used to build the reference SSp.
were not considered for the study validation. These mass
spectra were later experimentally validated against all
SSp. (data not shown). All mass spectra of the ticks
were, as one would expect, correctly identified with their
corresponding SSp.

Discussion

Several genera of ixodid tick genera co-exist throughout
Eastern Africa, including Hyalomma, Amblyomma and
Rhipicephalus. Precise and timely data on tick popula-
tion distribution and size in a given geographical area
are required to model epidemiological trends of tick-
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Fig. 3 Cladogram (neighbour joining algorithm) illustrating the inter species specificity of tick mass spectra. Spectral profiles of two technical replicates
(A and B) of the 33 COI gene sequenced ticks were integrated to the analysis. Two spectra (*) of a solely morphologically identified R. pulchellus tick were
added to the dataset to maintain a minimum number of two specimens per species
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borne diseases and formulate effective control strategies
[1, 33]. However, tick identification by morphology can
be limited by a lack of expertise, the need of several male
specimens, whereas immature tick stages are difficult to
identify by morphology alone [6].

In this study, MALDI-TOF MS was used to investigate
a collection of laboratory-bred and field-collected afro-
tropical ixodid ticks with the aim of confirming their
identity and establishing a reference MS spectra index
designated as SSp.

The quality of the spectra generated for the vast ma-
jority of the ticks included in this study corresponded
to what has been observed in similar studies with a
range of arthropod vectors including European tick
species [15, 16], tsetse flies [14], mosquitoes [12] and
midges [31].

We found that spectra quality, overall protein mass
counts and the molecular weight range that can be de-
termined mainly depend on the initial quality of the
sample itself. Seventeen ticks that were improperly
stored and overgrown by fungus, or that were com-
pletely desiccated needed to be removed from this study
due to inadequate quality of mass spectra obtained. A
less apparent factor negatively affecting the overall spec-
tral quality seems to be long-term storage of tick speci-
mens in ethanol [31]. This could have been a factor in
the failure to correctly identify 14 ticks, where most
mass profiles revealed alterations in spectral quality on
close examination. Poor peak resolution, diffuse signals
in the low molecular weight range, and a shift in peak
patterns were the most common characteristics observed
in spectra from the unidentified specimens. Additional
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Table 3 Superspectra designed in this study

Name of SSp.

Condensed N (COl-typed) Origin (N)
Mass Count

Amblyomma gemma 24

Amblyomma 30
variegatum

Hyalomma dromedarii 29

Hyalomma marginatum 24
rufipes

Hyalomma truncatum 23

Rhipicephalus 14
(Boophilus) decoloratus
Rhipicephalus 16
(Boophilus) microplus
Rhipicephalus 21
appendiculatus |
Rhipicephalus 18
appendiculatus |l

Rhipicephalus evertsi 19
evertsi

Rhipicephalus pulchellus 26

Rhipicephalus simus 18
group
Total

Field (4)
Lab (3), Field (1)

Lab (4)
Field (4)

Field (4)
Lab (2), Field (2)

Lab (3), Field (1)
Lab Muguga (2),
Field (2)

Lab Kiambu (4)

Lab (2), Field (2)

Field (4)
Field (4)

Lab (20), Field (28)

Table 4 Validation of SSp. with 333 ticks
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MALDI-TOF MS analysis with ticks plucked directly
from animals or collected from vegetation without prior
storage in ethanol could support these assumptions and
reveal if spectral quality and taxonomic resolution can
be enhanced significantly using freshly collected ticks.

In the majority of cases with samples sufficiently con-
served, identification of ticks by matching their mass
profiles against reference SSp. proved to be very robust.
This was demonstrated by the high sensitivity (96.1 %)
with which tick species were identified successfully. This
is a significant achievement considering the large tick
collection size, with some of the species represented by
specimens originating from very different laboratory or
field environments.

Together with COI gene sequences, a number of inter-
esting conclusions can be inferred from the present
study. The known problem of morphological tick species
misidentification can be exemplified by two of our find-
ings. (a) COI-typing of two ticks morphologically identi-
fied as A. hebraeum, revealed that the specimens were in
fact members of the closely related A. gemma. This was
for the most part resolved by our MALDI-TOF MS ana-
lyses, where three of the tick samples were identified
clearly as A. gemma. The fourth tick, although showing
high similarity with the A. gemma SSp., displayed spec-
tral alterations and was not assigned any ID. (b) Simi-
larly, a batch of ticks included into our collection clearly

Tick species name N True ID assigned® No ID Wrong ID Sensitivity ~ Specificity
assigned? assigned?
4x CC 3x CCIx N 2x CC2x N éxCC1>< other
Amblyomma gemma 21 4 4 5 0 4 4 0 81.00 % 100.00 %
Amblyomma variegatum 36 16 9 4 4 3 0 0 100.00 %  100.00 %
Hyalomma dromedarii 15 11 1 0 1 0 2 0 86.70 % 100.00 %
Hyalomma marginatum rufipes 14 4 4 2 0 2 2 0 85.70 % 100.00 %
Hyalomma truncatum 10 2 4 2 1 0 1 0 90.00 % 100.00 %
Rhipicephalus (Boophilus) 37 25 7 1 2 2 0 0 100.00 %  100.00 %
decoloratus
Rhipicephalus (Boophilus) 20 6 8 0 3 3 0 0 100.00 %  100.00 %
microplus
Rhipicephalus appendiculatus 74 53 13 3 2 2 1 0 98.60 % 100.00 %
Rhipicephalus appendiculatus 5 4 0 0 0 0 1 0 80.00 % 100.00 %
(Kiambu)
Rhipicephalus evertsi evertsi 51 34 9 1 4 1 1 1 98.00%  98.00 %
Rhipicephalus pulchellus 33 15 5 4 2 7 0 0 100.00 % 100.00 %
Rhipicephalus simus group 17 8 2 1 0 5 1 0 94.10 %  100.00 %
182 66 23 19 29
Total 333 319 13 1 96.10%  99.70 %

?For each tick, four technical replicate mass spectra were matched against designed SSp. and a final ID assigned accordingly
CC: one correct SSp. matching; C: multiple SSp. matching, correct SSp. as top match; N: no matching SSp
other: true ID was assigned based on a different combination
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gil73810261gblAF132840.11_R._simus
370 - R. simus group (Field)
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225 - R. appendiculatus (Field) Ref
gil7381012IgblAF132833.1IAF132833_R._appendiculatus
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Fig. 4 Phylogenetic relationship of 11 reference (NCBI) and 36 study ticks based on their COI gene sequences, illustrated as a maximum likelihood
phylogenetic tree. Accentuated in green are top matching GenBank reference sequences. Asterisks (*) indicate non-consensus sequences. Scale: The
bar length corresponds to 0.03 % (20 nt) difference in nucleotide sequence. Ref. Reference tick used to design SSp

165 - R. (B.) microplus (Lab)* Ref
gil536462285IgblKF200106.11 R. (B.) microplus

belonged to the genus Hyalomma. However, the absence
of any reference specimen did not allow reliable morpho-
logical species identification. COI gene sequencing and
MALDI-TOF MS both convincingly identified these ticks
as H. dromedarii. These examples confirm the value of
MALDI-TOF MS for resolution of tick taxonomic ambi-
guities. MALDI-TOF MS can provide improved and fast
discrimination, especially when morphological examin-
ation is insufficient for a clear species designation.

The limitations of conventional tick typing are not
restricted to the morphological approach but can extend
to molecular techniques such as sequencing of the mito-
chondrial COI gene. This issue has been highlighted by
the example of genetic hybridization occurring amongst
members of the genus Hyalomma as described by Rees
et al. [34]. While individuals of the species H. truncatum,

H. dromedarii and H. marginatum rufipes are well dif-
ferentiated both morphologically and genetically, sexual
reproduction between members of these species can
occur, resulting in hybrid offspring. Such intermediate
individuals (e.g. NCBI record AJ437088.1 in Table 2) still
display the distinct paternal morphological features
while possessing the maternally inherited mtDNA geno-
type. The use of COI sequencing on its own can there-
fore result in misclassification of such specimens. It will
be the subject of further research to establish how the
mass spectra of hybrid ticks differ from the parental pro-
tein fingerprint and to what extent MALDI-TOF MS
can serve as monitoring tool for following the gene flow
amongst different tick species.

One unresolved issue in African tick taxonomy
was highlighted by our findings regarding the ticks
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morphologically assigned as R. praetextatus and R.
simus. The ongoing debate, as to which of these spe-
cies is distributed where in East-Africa is based largely
on the fact that they can not be easily separated mor-
phologically [5]. Defining the accurate spread of R
simus and R. praetextatus is further complicated by the
co-occurrence of other, highly similar species including
R. lunulatus and R. muhsamae known to be present in
the same East African habitats [5, 35]. The fact, that R.
simus has been described to be restricted to Southern
Africa [4, 5] suggested early on that our R. simus field
isolates from Kenya were mistaken with a morphologic-
ally highly similar species. This was supported by the
COI gene analysis, which grouped this ticks closer to R.
praetextatus (BOLD, 94 % identity) and R muhsamae
(GenBank, 99 % identity and 67 % query cover) than to
R simus (GenBank, 92 % identity and 99 % query
cover). The sequence data was equally unclear for our
R. praetextatus specimens, with both high matches to
unpublished records of R. praetextatus reference se-
quences on BOLD (100 % identity) and R. simus in
GenBank (96 % identity, 98 % query cover). A phylo-
genetic maximum-likelihood analysis of all COI nucleo-
tide sequences derived in this study and reference
records from GenBank (Fig. 4), supports these infer-
ences regarding R. simus and R. praetextatus. Although
there appears to be a clear molecular boundary between
the analyzed ticks with a suggested close proximity of
the R. simus ticks (specimen no. 29 and 115) to R. muh-
samae, the limited reference records available do not
allow a conclusive answer regarding the true identity of
our ticks. We therefore merged these ticks to one
group defined as R. simus group, enveloping the tick
species R. simus, R. praetextatus and R. muhsamae, as
previously suggested by Walker, Keirans and Horak [5].

Whether MALDI-TOF MS analysis can distinguish
between these three tick species, where current COI,
12S and ITS2 molecular data is non-conclusive (E.
Kanduma and R. Bishop, unpublished data), requires
further investigation with representative specimens
from all three species. It is however worth noting
that our phylogenetic cluster analysis of four speci-
mens designated as members of the R simus group
indicated potential differences between the spectral
profiles (Fig. 3). Further studies will be needed to
conclusively confirm the value of MALDI-TOF MS
in discriminating between the species of the R. simus
group.

The Kiambu R. appendiculatus specimens, where
only five ticks were available for validation, and the
ticks belonging to A. gemma were detected with the
lowest sensitivity by our SSp. approach. The failure in
species ID assignment for these specimens might par-
tially be explained by the negative effect of long-term

Page 13 of 15

storage in ethanol as discussed before. Additionally, we
hypothesized that intraspecies genetic heterogeneity
could be increased in these two sets of ticks, leading to
stronger diversity in spectral fingerprints. Phylogenetic
analysis of the COI gene sequences does not support
this theory (Fig. 4). The A. gemma ticks among each
other, as well as the R. appendiculatus ticks of both
Muguga and Kiambu stock shared almost identical COI
nucleotide sequences. Continuative studies, incorporat-
ing freshly plucked ticks, will help to determine to what
extent the overall sensitivity of a SSp. based identifica-
tion approach can still be improved.

Looking ahead, the potential applications of MALDI-
TOF MS as a tick species typing tool are diverse,
ranging from pathogen and vector epidemiological
monitoring for disease outbreak detection, to following
consequences of climate change and its influence on
changing patterns of tick distribution and its associated
disease risks as described [36]. Furthermore, the SSp.
established here provide the basis to move towards sim-
ultaneous characterization of African tick vectors and
pathogens transmitted by MALDI-TOF MS, as has
been shown with Rickettsia [37]. Another immediate
use of this technique would be monitoring the spread
of the invasive single host tick R. (B.) microplus [38].
This tick is both more adaptable to changing environ-
ments than native species like R. (B.) decoloratus and
has greater potency in transmission of protozoan and
bacterial pathogens, including Babesia bigemina, Babe-
sia bovis and Anaplasma marginale [39].

Conclusions

In summary, our study demonstrated the applicability of
MALDI-TOF MS as a suitable tool for East African tick
identification. The processing steps of the ticks for
MALDI-TOF MS are straightforward, with little time
and human and equipment resources needed. The rapid
generation of mass spectra profiles and their automated,
immediate comparison against pre-designed reference
SSp. allow high-throughput measurement of large num-
bers of samples. We identified the quality of the samples
used as the main limiting factor for the MALDI-TOF
MS analyses. Whenever possible, tick material collected
freshly from the field should be analyzed. The negative
impact of sample storage under ethanol for limited pe-
riods of time should be evaluated carefully, since this
would increase applicability to large tick collections sam-
pled across Africa. Under good conditions of sample
storage, MALDI-TOF MS can generate highly distinctive
mass profile patterns that will allow precise and rapid
monitoring of tick populations, species movements,
pathogen transmission and host feeding preferences on a
large-scale.
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Additional file

Additional file 1: Figure S1. Comparison of MALDI-TOF MS spectral
profiles, indicating distinct mass peak patterns among the different tick
genera Amblyomma, Hyalomma, Rhipicephalus and Rhipicephalus (Boophilus).
The spectra illustrated in the figure cover a mass range between 4000
to 18,000 Da. The relative peak intensities are indicated on the y-axis.
(PDF 143 kb)
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