30 research outputs found
Comprehensive resequence analysis of a 97 kb region of chromosome 10q11.2 containing the MSMB gene associated with prostate cancer
Genome-wide association studies of prostate cancer have identified single nucleotide polymorphism (SNP) markers in a region of chromosome 10q11.2, harboring the microseminoprotein-β (MSMB) gene. Both the gene product of MSMB, the prostate secretory protein 94 (PSP94) and its binding protein (PSPBP), have been previously investigated as serum biomarkers for prostate cancer progression. Recent functional work has shown that different alleles of the significantly associated SNP in the promoter of MSMB found to be associated with prostate cancer risk, rs10993994, can influence its expression in tumors and in vitro studies. Since it is plausible that additional variants in this region contribute to the risk of prostate cancer, we have used next-generation sequencing technology to resequence a ~97-kb region that includes the area surrounding MSMB (chr10: 51,168,025–51,265,101) in 36 prostate cancer cases, 26 controls of European origin, and 8 unrelated CEPH individuals in order to identify additional variants to investigate in functional studies. We identified 241 novel polymorphisms within this region, including 142 in the 51-kb block of linkage disequilibrium (LD) that contains rs10993994 and the proximal promoter of MSMB. No sites were observed to be polymorphic within the exons of MSMB
Anti-oestrogens but not oestrogen deprivation promote cellular invasion in intercellular adhesion-deficient breast cancer cells
Introduction
Anti-oestrogens have been the mainstay of therapy in patients with oestrogen-receptor (ER) positive breast cancer and have provided significant improvements in survival. However, their benefits are limited by tumour recurrence in a significant proportion of initially drug-responsive breast cancer patients because of acquired anti-oestrogen resistance. Relapse on such therapies clinically presents as local and/or regional recurrences, frequently with distant metastases, and the prognosis for these patients is poor. The selective ER modulator, tamoxifen, classically exerts gene inhibitory effects during the drug-responsive phase in ER-positive breast cancer cells. Paradoxically, this drug is also able to induce the expression of genes, which in the appropriate cell context may contribute to an adverse cell phenotype. Here we have investigated the effects of tamoxifen and fulvestrant treatment on invasive signalling and compared this with the direct effects of oestrogen withdrawal to mimic the action of aromatase inhibitors.
Methods
The effect of oestrogen and 4-hydroxy-tamoxifen on the invasive capacity of endocrine-sensitive MCF-7 cells, in the presence or absence of functional E-cadherin, was determined by Matrigel invasion assays. Studies also monitored the impact of oestrogen withdrawal or treatment with fulvestrant on cell invasion. Western blotting using phospho-specific antibodies was performed to ascertain changes in invasive signalling in response to the two anti-oestrogens versus both oestradiol treatment and withdrawal.
Results
To the best of our knowledge, we report for the first time that tamoxifen can promote an invasive phenotype in ER-positive breast cancer cells under conditions of poor cell-cell contact and suggest a role for Src kinase and associated pro-invasive genes in this process. Our studies revealed that although this adverse effect is also apparent for further classes of anti-oestrogens, exemplified by the steroidal agent fulvestrant, it is absent during oestrogen withdrawal.
Conclusions
These data highlight a previously unreported effect of tamoxifen (and potentially further anti-oestrogens), that such agents appear able to induce breast cancer cell invasion in a specific context (absence of good cell-cell contacts), where these findings may have major clinical implications for those patients with tumours that have inherently poor intercellular adhesion. In such patients oestrogen deprivation with aromatase inhibitors may be more appropriate
A comprehensive resequence analysis of the KLK15–KLK3–KLK2 locus on chromosome 19q13.33
Single nucleotide polymorphisms (SNPs) in the KLK3 gene on chromosome 19q13.33 are associated with serum prostate-specific antigen (PSA) levels. Recent genome wide association studies of prostate cancer have yielded conflicting results for association of the same SNPs with prostate cancer risk. Since the KLK3 gene encodes the PSA protein that forms the basis for a widely used screening test for prostate cancer, it is critical to fully characterize genetic variation in this region and assess its relationship with the risk of prostate cancer. We have conducted a next-generation sequence analysis in 78 individuals of European ancestry to characterize common (minor allele frequency, MAF >1%) genetic variation in a 56 kb region on chromosome 19q13.33 centered on the KLK3 gene (chr19:56,019,829–56,076,043 bps). We identified 555 polymorphic loci in the process including 116 novel SNPs and 182 novel insertion/deletion polymorphisms (indels). Based on tagging analysis, 144 loci are necessary to tag the region at an r2 threshold of 0.8 and MAF of 1% or higher, while 86 loci are required to tag the region at an r2 threshold of 0.8 and MAF >5%. Our sequence data augments coverage by 35 and 78% as compared to variants in dbSNP and HapMap, respectively. We observed six non-synonymous amino acid or frame shift changes in the KLK3 gene and three changes in each of the neighboring genes, KLK15 and KLK2. Our study has generated a detailed map of common genetic variation in the genomic region surrounding the KLK3 gene, which should be useful for fine-mapping the association signal as well as determining the contribution of this locus to prostate cancer risk and/or regulation of PSA expression
The Potential and Challenges of Nanopore Sequencing
A nanopore-based device provides single-molecule detection and analytical capabilities that are achieved by electrophoretically driving molecules in solution through a nano-scale pore. The nanopore provides a highly confined space within which single nucleic acid polymers can be analyzed at high throughput by one of a variety of means, and the perfect processivity that can be enforced
in a narrow pore ensures that the native order of the nucleobases in a polynucleotide is reflected in the sequence of signals that is detected. Kilobase length polymers (single-stranded genomic DNA or RNA) or small molecules (e.g., nucleosides) can be identified and characterized without amplification or labeling, a unique analytical capability that makes inexpensive, rapid DNA sequencing
a possibility. Further research and development to overcome current challenges to nanopore identification of each successive nucleotide in a DNA strand offers the prospect of ‘third generation’ instruments that will sequence a diploid mammalian genome for ~$1,000 in ~24 h.Molecular and Cellular BiologyPhysic
Deep sequencing of plant and animal DNA contained within traditional Chinese medicines reveals legality issues and health safety concerns
Traditional Chinese medicine (TCM) has been practiced for thousands of years, but only within the last few decades has its use become more widespread outside of Asia. Concerns continue to be raised about the efficacy, legality, and safety of many popular complementary alternative medicines, including TCMs. Ingredients of some TCMs are known to include derivatives of endangered, trade-restricted species of plants and animals, and therefore contravene the Convention on International Trade in Endangered Species (CITES) legislation. Chromatographic studies have detected the presence of heavy metals and plant toxins within some TCMs, and there are numerous cases of adverse reactions. It is in the interests of both biodiversity conservation and public safety that techniques are developed to screen medicinals like TCMs. Targeting both the p-loop region of the plastid trnL gene and the mitochondrial 16S ribosomal RNA gene, over 49,000 amplicon sequence reads were generated from 15 TCM samples presented in the form of powders, tablets, capsules, bile flakes, and herbal teas. Here we show that second-generation, high-throughput sequencing (HTS) of DNA represents an effective means to genetically audit organic ingredients within complex TCMs. Comparison of DNA sequence data to reference databases revealed the presence of 68 different plant families and included genera, such as Ephedra and Asarum, that are potentially toxic. Similarly, animal families were identified that include genera that are classified as vulnerable, endangered, or critically endangered, including Asiatic black bear (Ursus thibetanus) and Saiga antelope (Saiga tatarica). Bovidae, Cervidae, and Bufonidae DNA were also detected in many of the TCM samples and were rarely declared on the product packaging. This study demonstrates that deep sequencing via HTS is an efficient and cost-effective way to audit highly processed TCM products and will assist in monitoring their legality and safety especially when plant reference databases become better established
Pore cross-talk in colloidal filtration
International audienceBlockage of pores by particles is found in many processes, including filtration and oil extraction. We present filtration experiments through a linear array of ten channels with one dimension which is sub-micron, through which a dilute dispersion of Brownian polystyrene spheres flows under the action of a fixed pressure drop. The growth rate of a clog formed by particles at a pore entrance systematically increases with the number of already saturated (entirely clogged) pores, indicating that there is an interaction or “cross-talk” between the pores. This observation is interpreted based on a phenomenological model, stating that a diffusive redistribution of particles occurs along the membrane, from clogged to free pores. This one-dimensional model could be extended to two-dimensional membranes
Parallel Direct Methods For Sparse Linear Systems
We present an overview of parallel direct methods for solving sparse systems of linear equations, focusing on symmetric positive definite systems. We examine the performance implications of the important differences between dense and sparse systems. Our main emphasis is on parallel implementation of the numerically intensive factorization process, but we also briefly consider the other major components of direct methods, such as parallel ordering. Introduction In this paper we present a brief overview of parallel direct methods for solving sparse linear systems. Paradoxically, sparse matrix factorization offers additional opportunities for exploiting parallelism beyond those available with dense matrices, yet it is often more difficult to attain good efficiency in the sparse case. We examine both sides of this paradox: the additional parallelism induced by sparsity, and the difficulty in achieving high efficiency in spite of it. We focus on Cholesky factorization, primarily because th..
Caveolin-1 polarization in transmigrating endothelial cells requires binding to intermediate filaments
Caveolin-1 influences cell migration through multiple signaling pathways. In a previous report, we have shown that caveolin-1 is polarized in three-dimensional migrating endothelial cells (EC), and that caveolin-1 accumulation at the front of transmigrating cells requires the phosphorylatable Tyr14 residue of caveolin-1. Immuno-electron microscopy further indicated that caveolin-1 was distributed along cytoskeletal structures in the anterior of transmigrating EC [Parat MO, Anand-Apte B, Fox PL (Mol Biol Cell 14:3156–3168, 2003)]. In the present study, we investigate whether caveolin-1 interacts with intermediate filaments (IF) and whether this interaction is required for caveolin-1 polarization in transmigrating cells. The distribution of vimentin is polarized in cells traversing a filter pore and overlaps with the distribution of caveolin-1, which accumulates in the cell front. In vivo sprouting EC also exhibit an anterior polarization of these two proteins. Furthermore, caveolin-1 co-purifies with intermediate filaments, suggesting an interaction between caveolin-1 and IF. Vimentin-deficient SW13 cells exhibit a dramatically altered polarization of caveolin-1-GFP, which no longer accumulates in the protruding cell extension. In addition, the Tyr14 residue of caveolin-1 is required for co-purification of the protein with IF. Taken together, our results show that caveolin-1 Tyr14 is necessary for binding to intermediate filaments, which in turn is required for anterior polarization of caveolin-1 in transmigrating cells