931 research outputs found

    Dissecting the knee - Air shower measurements with KASCADE

    Full text link
    Recent results of the KASCADE air shower experiment are presented in order to shed some light on the astrophysics of cosmic rays in the region of the knee in the energy spectrum. The results include investigations of high-energy interactions in the atmosphere, the analysis of the arrival directions of cosmic rays, the determination of the mean logarithmic mass, and the unfolding of energy spectra for elemental groups

    Two-site dynamical mean-field theory

    Full text link
    It is shown that a minimum realization of the dynamical mean-field theory (DMFT) can be achieved by mapping a correlated lattice model onto an impurity model in which the impurity is coupled to an uncorrelated bath that consists of a single site only. The two-site impurity model can be solved exactly. The mapping is approximate. The self-consistency conditions are constructed in a way that the resulting ``two-site DMFT'' reduces to the previously discussed linearized DMFT for the Mott transition. It is demonstrated that a reasonable description of the mean-field physics is possible with a minimum computational effort. This qualifies the simple two-site DMFT for a systematic study of more complex lattice models which cannot be treated by the full DMFT in a feasible way. To show the strengths and limitations of the new approach, the single-band Hubbard model is investigated in detail. The predictions of the two-site DMFT are compared with results of the full DMFT. Internal consistency checks are performed which concern the Luttinger sum rule, other Fermi-liquid relations and thermodynamic consistency.Comment: LaTeX, 14 pages, 8 eps figures included, Phys. Rev. B (in press

    Diffusion Tensor Imaging and Tractography in Brown-Sequard Syndrome

    Get PDF
    This report illustrates the utility of DTI and DTT in delineating regions of cord injury in two patients with traumatic Brown-Sequard syndrome. Our results indicate that DTI provides clinically relevant information that supplements conventional MR imaging for patients with acute SCI

    Large scale cosmic-ray anisotropy with KASCADE

    Full text link
    The results of an analysis of the large scale anisotropy of cosmic rays in the PeV range are presented. The Rayleigh formalism is applied to the right ascension distribution of extensive air showers measured by the KASCADE experiment.The data set contains about 10^8 extensive air showers in the energy range from 0.7 to 6 PeV. No hints for anisotropy are visible in the right ascension distributions in this energy range. This accounts for all showers as well as for subsets containing showers induced by predominantly light respectively heavy primary particles. Upper flux limits for Rayleigh amplitudes are determined to be between 10^-3 at 0.7 PeV and 10^-2 at 6 PeV primary energy.Comment: accepted by The Astrophysical Journa

    Cosmic Ray Energy Spectra and Mass Composition at the Knee - Recent Results from KASCADE -

    Full text link
    Recent results from the KASCADE experiment on measurements of cosmic rays in the energy range of the knee are presented. Emphasis is placed on energy spectra of individual mass groups as obtained from an two-dimensional unfolding applied to the reconstructed electron and truncated muon numbers of each individual EAS. The data show a knee-like structure in the energy spectra of light primaries (p, He, C) and an increasing dominance of heavy ones (A > 20) towards higher energies. This basic result is robust against uncertainties of the applied interaction models QGSJET and SIBYLL which are used in the shower simulations to analyse the data. Slight differences observed between experimental data and EAS simulations provide important clues for further improvements of the interaction models. The data are complemented by new limits on global anisotropies in the arrival directions of CRs and by upper limits on point sources. Astrophysical implications for discriminating models of maximum acceleration energy vs galactic diffusion/drift models of the knee are discussed based on this data.Comment: 8 pages, 7 figures, to appear in Nuclear Physics B, Proceedings Supplements, as part of the volume for the CRIS 2004, Cosmic Ray International Seminar: GZK and Surrounding

    Machine studies for the development of storage cells at the ANKE facility of COSY

    Full text link
    We present a measurement of the transverse intensity distributions of the COSY proton beam at the target interaction point at ANKE at the injection energy of 45 MeV, and after acceleration at 2.65 GeV. At 2.65 GeV, the machine acceptance was determined as well. From the intensity distributions the beam size is determined, and together with the measured machine acceptance, the dimensions of a storage cell for the double-polarized experiments with the polarized internal gas target at the ANKE spectrometer are specified. An optimum storage cell for the ANKE experiments should have dimensions of 15mm x 20mm x 390mm (vertical x horizontal x longitudinal), whereby a luminosity of about 2.5*10^29 cm^-2*s^-1 with beams of 10^10 particles stored in COSY could be reached.Comment: 18 pages, 13 figures, 4 table

    Primary Proton Spectrum of Cosmic Rays measured with Single Hadrons

    Full text link
    The flux of cosmic-ray induced single hadrons near sea level has been measured with the large hadron calorimeter of the KASCADE experiment. The measurement corroborates former results obtained with detectors of smaller size if the enlarged veto of the 304 m^2 calorimeter surface is encounted for. The program CORSIKA/QGSJET is used to compute the cosmic-ray flux above the atmosphere. Between E_0=300 GeV and 1 PeV the primary proton spectrum can be described with a power law parametrized as dJ/dE_0=(0.15+-0.03)*E_0^{-2.78+-0.03} m^-2 s^-1 sr^-1 TeV^-1. In the TeV region the proton flux compares well with the results from recent measurements of direct experiments.Comment: 13 pages, accepted by Astrophysical Journa

    Kaon pair production close to threshold

    Get PDF
    The total cross section of the reaction pp->ppK+K- has been measured at excess energies Q=10 MeV and 28 MeV with the magnetic spectrometer COSY-11. The new data show a significant enhancement of the total cross section compared to pure phase space expectations or calculations within a one boson exchange model. In addition, we present invariant mass spectra of two particle subsystems. While the K+K- system is rather constant for different invariant masses, there is an enhancement in the pK- system towards lower masses which could at least be partially connected to the influence of the Lambda(1405) resonance.Comment: accepted for publication in Phys. Lett.

    KASCADE: Astrophysical results and tests of hadronic interaction models

    Full text link
    KASCADE is a multi-detector setup to get redundant information on single air shower basis. The information is used to perform multiparameter analyses to solve the threefold problem of the reconstruction of (i)the unknown primary energy, (ii) the primary mass, and (iii) to quantify the characteristics of the hadronic interactions in the air-shower development. In this talk recent results of the KASCADE data analyses are summarized concerning cosmic ray anisotropy studies, determination of flux spectra for different primary mass groups, and approaches to test hadronic interaction models. Neither large scale anisotropies nor point sources were found in the KASCADE data set. The energy spectra of the light element groups result in a knee-like bending and a steepening above the knee. The topology of the individual knee positions shows a dependency on the primary particle. Though no hadronic interaction model is fully able to describe the multi-parameter data of KASCADE consistently, the more recent models or improved versions of older models reproduce the data better than few years ago.Comment: to appear in Nucl. Phys. B (Proc. Suppl.), Proc. of the XIII ISVHECRI, Pylos 2004 - with a better quality of the figure

    Radio emission of highly inclined cosmic ray air showers measured with LOPES

    Get PDF
    LOPES-10 (the first phase of LOPES, consisting of 10 antennas) detected a significant number of cosmic ray air showers with a zenith angle larger than 50^{\circ}, and many of these have very high radio field strengths. The most inclined event that has been detected with LOPES-10 has a zenith angle of almost 80^{\circ}. This is proof that the new technique is also applicable for cosmic ray air showers with high inclinations, which in the case that they are initiated close to the ground, can be a signature of neutrino events.Our results indicate that arrays of simple radio antennas can be used for the detection of highly inclined air showers, which might be triggered by neutrinos. In addition, we found that the radio pulse height (normalized with the muon number) for highly inclined events increases with the geomagnetic angle, which confirms the geomagnetic origin of radio emission in cosmic ray air showers.Comment: A&A accepte
    corecore