112 research outputs found

    CHORUS Deliverable 2.1: State of the Art on Multimedia Search Engines

    Get PDF
    Based on the information provided by European projects and national initiatives related to multimedia search as well as domains experts that participated in the CHORUS Think-thanks and workshops, this document reports on the state of the art related to multimedia content search from, a technical, and socio-economic perspective. The technical perspective includes an up to date view on content based indexing and retrieval technologies, multimedia search in the context of mobile devices and peer-to-peer networks, and an overview of current evaluation and benchmark inititiatives to measure the performance of multimedia search engines. From a socio-economic perspective we inventorize the impact and legal consequences of these technical advances and point out future directions of research

    Pnictogens Allotropy and Phase Transformation during van der Waals Growth

    Full text link
    Pnictogens have multiple allotropic forms resulting from their ns2 np3 valence electronic configuration, making them the only elemental materials to crystallize in layered van der Waals (vdW) and quasi-vdW structures throughout the group. Light group VA elements are found in the layered orthorhombic A17 phase such as black phosphorus, and can transition to the layered rhombohedral A7 phase at high pressure. On the other hand, bulk heavier elements are only stable in the A7 phase. Herein, we demonstrate that these two phases not only co-exist during the vdW growth of antimony on weakly interacting surfaces, but also undertake a spontaneous transformation from the A17 phase to the thermodynamically stable A7 phase. This metastability of the A17 phase is revealed by real-time studies unraveling its thickness-driven transition to the A7 phase and the concomitant evolution of its electronic properties. At a critical thickness of ~4 nm, A17 antimony undergoes a diffusionless shuffle transition from AB to AA stacked alpha-antimonene followed by a gradual relaxation to the A7 bulk-like phase. Furthermore, the electronic structure of this intermediate phase is found to be determined by surface self-passivation and the associated competition between A7- and A17-like bonding in the bulk. These results highlight the critical role of the atomic structure and interfacial interactions in shaping the stability and electronic characteristics of vdW layered materials, thus enabling a new degree of freedom to engineer their properties using scalable processes

    CHORUS Deliverable 2.2: Second report - identification of multi-disciplinary key issues for gap analysis toward EU multimedia search engines roadmap

    Get PDF
    After addressing the state-of-the-art during the first year of Chorus and establishing the existing landscape in multimedia search engines, we have identified and analyzed gaps within European research effort during our second year. In this period we focused on three directions, notably technological issues, user-centred issues and use-cases and socio- economic and legal aspects. These were assessed by two central studies: firstly, a concerted vision of functional breakdown of generic multimedia search engine, and secondly, a representative use-cases descriptions with the related discussion on requirement for technological challenges. Both studies have been carried out in cooperation and consultation with the community at large through EC concertation meetings (multimedia search engines cluster), several meetings with our Think-Tank, presentations in international conferences, and surveys addressed to EU projects coordinators as well as National initiatives coordinators. Based on the obtained feedback we identified two types of gaps, namely core technological gaps that involve research challenges, and “enablers”, which are not necessarily technical research challenges, but have impact on innovation progress. New socio-economic trends are presented as well as emerging legal challenges

    Intertwined magnetism and charge density wave order in kagome FeGe

    Full text link
    Electron correlations often lead to emergent orders in quantum materials. Kagome lattice materials are emerging as an exciting platform for realizing quantum topology in the presence of electron correlations. This proposal stems from the key signatures of electronic structures associated with its lattice geometry: flat band induced by destructive interference of the electronic wavefunctions, topological Dirac crossing, and a pair of van Hove singularities (vHSs). A plethora of correlated electronic phases have been discovered amongst kagome lattice materials, including magnetism, charge density wave (CDW), nematicity, and superconductivity. These materials can be largely organized into two types: those that host magnetism and those that host CDW order. Recently, a CDW order has been discovered in the magnetic kagome FeGe, providing a new platform for understanding the interplay between CDW and magnetism. Here, utilizing angle-resolved photoemission spectroscopy, we observe all three types of electronic signatures of the kagome lattice: flat bands, Dirac crossings, and vHSs. From both the observation of a temperature-dependent shift of the vHSs towards the Fermi level as well as guidance via first-principle calculations, we identify the presence of the vHSs near the Fermi level (EF) to be driven by the development of underlying magnetic exchange splitting. Furthermore, we show spectral evidence for the CDW order as gaps that open on the near-EF vHS bands, as well as evidence of electron-phonon coupling from a kink on the vHS band together with phonon hardening observed by inelastic neutron scattering. Our observation points to the magnetic interaction-driven band modification resulting in the formation of the CDW order, indicating an intertwined connection between the emergent magnetism and vHS charge order in this moderately-correlated kagome metal.Comment: submitted on April 22, 202

    Estimating the bispectrum of the Very Small Array data

    Get PDF
    We estimate the bispectrum of the Very Small Array data from the compact and extended configuration observations released in December 2002, and compare our results to those obtained from Gaussian simulations. There is a slight excess of large bispectrum values for two individual fields, but this does not appear when the fields are combined. Given our expected level of residual point sources, we do not expect these to be the source of the discrepancy. Using the compact configuration data, we put an upper limit of 5400 on the value of f_NL, the non-linear coupling parameter, at 95 per cent confidence. We test our bispectrum estimator using non-Gaussian simulations with a known bispectrum, and recover the input values.Comment: 17 pages, 16 figures, replaced with version accepted by MNRAS. Primordial bispectrum recalculated and figure 11 change

    Discovery of charge density wave in a correlated kagome lattice antiferromagnet

    Full text link
    A hallmark of strongly correlated quantum materials is the rich phase diagram resulting from competing and intertwined phases with nearly degenerate ground state energies. A well-known example is the copper oxides, where a charge density wave (CDW) is ordered well above and strongly coupled to the magnetic order to form spin-charge separated stripes that compete with superconductivity. Recently, such rich phase diagrams have also been revealed in correlated topological materials. In two-dimensional kagome lattice metals consisting of corner-sharing triangles, the geometry of the lattice can produce flat bands with localized electrons, non-trivial topology, chiral magnetic order, superconductivity and CDW order. While CDW has been found in weakly electron correlated nonmagnetic AV3Sb5 (A = K, Rb, Cs), it has not yet been observed in correlated magnetic ordered kagome lattice metals. Here we report the discovery of CDW within the antiferromagnetic (AFM) ordered phase of kagome lattice FeGe. The CDW in FeGe occurs at wavevectors identical to that of AV3Sb5, enhances the AFM ordered moment, and induces an emergent anomalous Hall effect. Our findings suggest that CDW in FeGe arises from the combination of electron correlations-driven AFM order and van Hove singularities-driven instability possibly associated with a chiral flux phase, in stark contrast to strongly correlated copper oxides and nickelates, where the CDW precedes or accompanies the magnetic order.Comment: 36 pages, 4 figures in main tex

    Anomalous excitonic phase diagram in band-gap-tuned Ta2Ni(Se,S)5

    Full text link
    During a band-gap-tuned semimetal-to-semiconductor transition, Coulomb attraction between electrons and holes can cause spontaneously formed excitons near the zero-band-gap point, or the Lifshitz transition point. This has become an important route to realize bulk excitonic insulators -- an insulating ground state distinct from single-particle band insulators. How this route manifests from weak to strong coupling is not clear. In this work, using angle-resolved photoemission spectroscopy (ARPES) and high-resolution synchrotron x-ray diffraction (XRD), we investigate the broken symmetry state across the semimetal-to-semiconductor transition in a leading bulk excitonic insulator candidate system Ta2Ni(Se,S)5. A broken symmetry phase is found to be continuously suppressed from the semimetal side to the semiconductor side, contradicting the anticipated maximal excitonic instability around the Lifshitz transition. Bolstered by first-principles and model calculations, we find strong interband electron-phonon coupling to play a crucial role in the enhanced symmetry breaking on the semimetal side of the phase diagram. Our results not only provide insight into the longstanding debate of the nature of intertwined orders in Ta2NiSe5, but also establish a basis for exploring band-gap-tuned structural and electronic instabilities in strongly coupled systems.Comment: 27 pages, 4 + 9 figure

    Gene content evolution in the arthropods

    Get PDF
    Arthropods comprise the largest and most diverse phylum on Earth and play vital roles in nearly every ecosystem. Their diversity stems in part from variations on a conserved body plan, resulting from and recorded in adaptive changes in the genome. Dissection of the genomic record of sequence change enables broad questions regarding genome evolution to be addressed, even across hyper-diverse taxa within arthropods. Using 76 whole genome sequences representing 21 orders spanning more than 500 million years of arthropod evolution, we document changes in gene and protein domain content and provide temporal and phylogenetic context for interpreting these innovations. We identify many novel gene families that arose early in the evolution of arthropods and during the diversification of insects into modern orders. We reveal unexpected variation in patterns of DNA methylation across arthropods and examples of gene family and protein domain evolution coincident with the appearance of notable phenotypic and physiological adaptations such as flight, metamorphosis, sociality, and chemoperception. These analyses demonstrate how large-scale comparative genomics can provide broad new insights into the genotype to phenotype map and generate testable hypotheses about the evolution of animal diversity
    corecore