54 research outputs found

    pKa Modulation of the Acid/Base Catalyst within GH32 and GH68: A Role in Substrate/Inhibitor Specificity?

    Get PDF
    Glycoside hydrolases of families 32 (GH32) and 68 (GH68) belong to clan GH-J, containing hydrolytic enzymes (sucrose/fructans as donor substrates) and fructosyltransferases (sucrose/fructans as donor and acceptor substrates). In GH32 members, some of the sugar substrates can also function as inhibitors, this regulatory aspect further adding to the complexity in enzyme functionalities within this family. Although 3D structural information becomes increasingly available within this clan and huge progress has been made on structure-function relationships, it is not clear why some sugars bind as inhibitors without being catalyzed. Conserved aspartate and glutamate residues are well known to act as nucleophile and acid/bases within this clan. Based on the available 3D structures of enzymes and enzyme-ligand complexes as well as docking simulations, we calculated the pKa of the acid-base before and after substrate binding. The obtained results strongly suggest that most GH-J members show an acid-base catalyst that is not sufficiently protonated before ligand entrance, while the acid-base can be fully protonated when a substrate, but not an inhibitor, enters the catalytic pocket. This provides a new mechanistic insight aiming at understanding the complex substrate and inhibitor specificities observed within the GH-J clan. Moreover, besides the effect of substrate entrance on its own, we strongly suggest that a highly conserved arginine residue (in the RDP motif) rather than the previously proposed Tyr motif (not conserved) provides the proton to increase the pKa of the acid-base catalyst

    Biapenem Inactivation by B2 Metallo β-Lactamases: Energy Landscape of the Post-Hydrolysis Reactions

    Get PDF
    <div><h3>Background</h3><p>The first line of defense by bacteria against <em>β</em>-lactam antibiotics is the expression of β-lactamases, which cleave the amide bond of the β-lactam ring. In the reaction of biapenem inactivation by B2 metallo β-lactamases (MβLs), after the β-lactam ring is opened, the carboxyl group generated by the hydrolytic process and the hydroxyethyl group (common to all carbapenems) rotate around the C5–C6 bond, assuming a new position that allows a proton transfer from the hydroxyethyl group to C2, and a nucleophilic attack on C3 by the oxygen atom of the same side-chain. This process leads to the formation of a bicyclic compound, as originally observed in the X-ray structure of the metallo β-lactamase CphA in complex with product.</p> <h3>Methodology/Principal Findings</h3><p>QM/MM and metadynamics simulations of the post-hydrolysis steps in solution and in the enzyme reveal that while the rotation of the hydroxyethyl group can occur in solution or in the enzyme active site, formation of the bicyclic compound occurs primarily in solution, after which the final product binds back to the enzyme. The calculations also suggest that the rotation and cyclization steps can occur at a rate comparable to that observed experimentally for the enzymatic inactivation of biapenem only if the hydrolysis reaction leaves the N4 nitrogen of the β-lactam ring unprotonated.</p> <h3>Conclusions/Significance</h3><p>The calculations support the existence of a common mechanism (in which ionized N4 is the leaving group) for carbapenems hydrolysis in all MβLs, and suggest a possible revision of mechanisms for B2 MβLs in which the cleavage of the β-lactam ring is associated with or immediately followed by protonation of N4. The study also indicates that the bicyclic derivative of biapenem has significant affinity for B2 MβLs, and that it may be possible to obtain clinically effective inhibitors of these enzymes by modification of this lead compound.</p> </div

    The NORMAN Association and the European Partnership for Chemicals Risk Assessment (PARC): let’s cooperate! [Commentary]

    Get PDF
    The Partnership for Chemicals Risk Assessment (PARC) is currently under development as a joint research and innovation programme to strengthen the scientific basis for chemical risk assessment in the EU. The plan is to bring chemical risk assessors and managers together with scientists to accelerate method development and the production of necessary data and knowledge, and to facilitate the transition to next-generation evidence-based risk assessment, a non-toxic environment and the European Green Deal. The NORMAN Network is an independent, well-established and competent network of more than 80 organisations in the field of emerging substances and has enormous potential to contribute to the implementation of the PARC partnership. NORMAN stands ready to provide expert advice to PARC, drawing on its long experience in the development, harmonisation and testing of advanced tools in relation to chemicals of emerging concern and in support of a European Early Warning System to unravel the risks of contaminants of emerging concern (CECs) and close the gap between research and innovation and regulatory processes. In this commentary we highlight the tools developed by NORMAN that we consider most relevant to supporting the PARC initiative: (i) joint data space and cutting-edge research tools for risk assessment of contaminants of emerging concern; (ii) collaborative European framework to improve data quality and comparability; (iii) advanced data analysis tools for a European early warning system and (iv) support to national and European chemical risk assessment thanks to harnessing, combining and sharing evidence and expertise on CECs. By combining the extensive knowledge and experience of the NORMAN network with the financial and policy-related strengths of the PARC initiative, a large step towards the goal of a non-toxic environment can be taken

    Field surveys reveal the presence of anti-androgens in an effluent-receiving river using stickleback-specific biomarkers

    Get PDF
    This study was designed to assess whether the removal of endocrine disrupting chemicals (EDCs) and other substances from a Waste Water Treatment Works (WWTW) effluent (receiving water: R. Ray, Swindon, UK) by granular activated carbon (GAC) affected biomarkers of exposure to EDCs [vitellogenin (VTG) and spiggin] in male and female three-spined sticklebacks in the receiving water. A nearby river (R. Ock), with a negligible effluent loading, was used as a control. On each river fish were sampled from four sites on five occasions both before and after remediation of the WWTW effluent. The results show for the first time in a UK field study a clear seasonality of blood VTG concentrations in wild male fish, following closely the VTG profile in female fish from both rivers. VTG levels in male fish from the R. Ray were significantly reduced after the GAC installation. However, VTG levels in males from the control sites also varied significantly across the same period, reducing the significance of this finding. A laboratory exposure to oestradiol (using site-specific lower and upper levels of oestrogenic activity) failed to elevate VTG concentrations in male sticklebacks suggesting that concentrations in the effluent, even prior to remediation, may not have exceeded a critical sensitivity threshold. Most importantly, a significant increase in female kidney spiggin content (a highly specific biomarker of xeno-androgen exposure) occurred in fish in the R. Ray after the GAC installation to levels comparable with those in fish from the control river. The significance of this finding is strengthened by the fact that during the pre-remediation period in the R. Ray, female spiggin levels increased with increasing distance from the WWTW. Our results provide the first in vivo evidence of the presence of anti-androgens in a U.K. WWTW effluent. To our knowledge this is the first U.K.-based comprehensive field study on the effects of a WWTW upgrade on biomarkers of EDC exposure using a sentinel fish species and our findings confirm the value of the stickleback as a model species for studying EDCs both in the laboratory and in the wild

    Toward Comprehensive Per- and Polyfluoroalkyl Substances Annotation Using FluoroMatch Software and Intelligent High-Resolution Tandem Mass Spectrometry Acquisition

    No full text
    Thousands of per- and polyfluoroalkyl substances (PFAS) exist in the environment and pose a potential health hazard. Suspect and nontarget screening with liquid chromatography (LC)–high-resolution tandem mass spectrometry (HRMS/MS) can be used for comprehensive characterization of PFAS. To date, no automated open source PFAS data analysis software exists to mine these extensive data sets. We introduce FluoroMatch, which automates file conversion, chromatographic peak picking, blank feature filtering, PFAS annotation based on precursor and fragment masses, and annotation ranking. The software library currently contains ∼7 000 PFAS fragmentation patterns based on rules derived from standards and literature, and the software automates a process for users to add additional compounds. The use of intelligent data-acquisition methods (iterative exclusion) nearly doubled the number of annotations. The software application is demonstrated by characterizing PFAS in landfill leachate as well as in leachate foam generated to concentrate the compounds for remediation purposes. FluoroMatch had wide coverage, returning 27 PFAS annotations for landfill leachate samples, explaining 71% of the all-ion fragmentation (CF2)n related fragments. By improving the throughput and coverage of PFAS annotation, FluoroMatch will accelerate the discovery of PFAS posing significant human risk

    Non-target screening with high-resolution mass spectrometry: Critical review using a collaborative trial on water analysis

    No full text
    In this article, a dataset from a collaborative nontarget screening trial organised by the NORMAN Association is used to review the state-of-the-art and discuss future perspectives of non-target creening using high-resolution mass spectrometry in water analysis. A total of 18 institutes from 12 European countries analysed an extract of the same water sample collected from the River Danube with either one or both of liquid and gas chromatography coupled with mass spectrometry detection. This article focuses mainly on the use of high resolution screening techniques with target, suspect, and non-target workflows to identify substances in environmental samples. Specific examples are given to emphasise major challenges including isobaric and co-eluting substances, dependence on target and suspect lists, formula assignment, the use of retention information, and the confidence of identification. Approaches andmethods applicable to unit resolution data are also discussed. Although most substances were identified using high resolution data with target and suspect-screening approaches, some participants proposed tentative non-target identifications. This comprehensive dataset revealed that non-target analytical techniques are already substantially harmonised between the participants, but the data processing remains time-consuming. Although the objective of a &quot;fully-automated identification workflow&quot; remains elusive in the short term, important steps in this direction have been taken, exemplified by the growing popularity of suspect screening approaches. Major recommendations to improve non-target screening include better integration and connection of desired features into software packages, the exchange of target and suspect lists, and the contribution ofmore spectra from standard substances into (openly accessible) databases. © Springer-Verlag Berlin Heidelberg 2015
    corecore