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Abstract
Purpose Identification of environmentally preferable alterna-
tives in a comparative life cycle assessment (LCA) can be
challenging in the presence of multiple incommensurate indi-
cators. To make the problem more manageable, some LCA
practitioners apply external normalization to find those indi-
cators that contribute the most to their respective environmen-
tal impact categories. However, in some cases, these results
can be entirely driven by the normalization reference, rather
than the comparative performance of the alternatives. This
study evaluates the influence of normalization methods on
interpretation of comparative LCA to facilitate the use of
LCA in decision-driven applications and inform LCA practi-
tioners of latent systematic biases. An alternative method
based on significance of mutual differences is proposed
instead.
Methods This paper performs a systematic evaluation of ex-
ternal normalization and describes an alternative called the
overlap area approach for the purpose of identifying relevant
issues in a comparative LCA. The overlap area approach

utilizes the probability distributions of characterized results
to assess significant differences. This study evaluates the ef-
fects in three LCIAmethods, through application of four com-
parative studies. For each application, we call attention to the
category indicators highlighted by each interpretation
approach.
Results and discussion External normalization in the three
LCIA methods suffers from a systematic bias that emphasizes
the same impact categories regardless of the application.
Consequently, comparative LCA studies that employ external
normalization to guide a selection may result in recommenda-
tions dominated entirely by the normalization reference and
insensitive to data uncertainty. Conversely, evaluation of mu-
tual differences via the overlap area calls attention to the im-
pact categories with the most significant differences between
alternatives. The overlap area approach does not show a sys-
tematic bias across LCA applications because it does not de-
pend on external references and it is sensitive to changes in
uncertainty. Thus, decisions based on the overlap area ap-
proach will draw attention to tradeoffs between alternatives,
highlight the role of stakeholder weights, and generate assess-
ments that are responsive to uncertainty.
Conclusions The solution to the issues of external normaliza-
tion in comparative LCAs proposed in this study call for an
entirely different algorithm capable of evaluating mutual dif-
ferences and integrating uncertainty in the results.

Keywords Comparative life cycle assessment . Decision
support . Interpretation . Normalization bias

1 Introduction

Research in life cycle assessment (LCA) methods focus pre-
dominantly on building life cycle inventory (LCI) databases
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(Frischknecht et al. 2004; Suh and Huppes 2005; Miller and
Theis 2006; Dones et al. 2007; Verbeeck and Hens 2010;
Jungbluth et al. 2012), calculating new midpoint characteriza-
tion factors (Koellner and Scholz 2007; Pfister et al. 2009; Van
Zelm et al. 2009; Gallego et al. 2010; Saad et al. 2011;
Hauschild et al. 2013), and improving end-point damage
modeling (Hayashi et al. 2006; Boulay et al. 2011;
Motoshita et al. 2014). Less emphasis has been placed on
normalization and weighting, which are optional practices in
life cycle impact assessment (LCIA).

Nonetheless, normalization and weighting remain crucial
in comparative LCA to provide decision support in the face of
uncertain environmental tradeoffs—such as when one alterna-
tive performs best in some areas and worse in others. In prob-
lems of comparative technology assessment, characterized re-
sults alone seldom result in a definitive environmental choice,
leaving decision-makers to confront complex environmental
tradeoffs largely unaided in examples critical to sustainability
(Rowley et al. 2012). These environmental tradeoffs exist re-
gardless of the completeness of characterization factors or LCI
databases. Thus, there is a critical need for analogous research
efforts focused on normalization and weighting as tools to
improve decision support in LCA.

There are numerous impact assessment methods available
to LCA analysts that apply to any LCI, each with their own
external normalization references. These tools provide alter-
native methods of characterizing and interpreting environ-
mental impacts from the myriad and disparate chemical re-
leases reported in a LCI. Some of the most widely applied
LCIA methods are as follows:

1. the Tool for Reduction and Assessment of Chemical and
Other Environmental Impacts (TRACI) developed by the
US Environmental Protection Agency (Bare 2011),

2. the Institute for Environmental Sciences (CML) impact
assessment tool developed at the University of Leiden in
the Netherlands (Guinée et al. 2002), and

3. ReCiPe, an impact assessment methodology developed in
partnership between four leading institutions (Goedkoop
et al. 2009).

According to ISO standards, normalization provides con-
text to characterized results by relating results to a reference
information (ISO 2006). Typically, as is the case with the main
LCIA methods, these normalization references represent a
community such as Europe, USA, or the world. The reference
information can also represent another system, or an internal
baseline such as the largest or smallest alternative. There are
two distinct approaches to normalization known as external
(when the reference is outside the study) or internal (when the
reference is within the study).While both approaches are men-
tioned in the ISO guidelines, external normalization ap-
proaches dominate current practice, with the exception of

the comparative bar charts typically produced by LCA soft-
ware packages that scale results via division by a maximum.

1.1 External normalization

The main goal of external normalization is to provide an un-
derstanding of the relative importance of category indicator
results of a single product system (Guinée et al. 2002).
Externally normalized results show the relative significance
of category indicators and thus can help guide improvement
efforts within a single product system (Heijungs et al. 2007).
Note the emphasis in single product system as these results
should not be used to make comparisons across impact cate-
gories and multiple product systems. Other uses of external
normalization are for checking inconsistencies, communica-
tion of the relative significance of category indicators (i.e., hot
spot identification) and as a procedure for weighting.

External normalization is done by dividing characterized
results by an estimate of the total or per capita equivalent
emissions in that impact category associated with an entire
geographical region (Eq. (1)). LCIA methods have options
of normalizing midpoint characterized results according to
external references. For example, ReCiPe midpoint H has a
European and a World normalization reference, which will
compare results according to estimations of annual European
or World per capita emissions (Goedkoop et al. 2009).

NIa;i ¼ CIa;i
NRi

ð1Þ

where

NIa , i is the normalized impact per year of alternative a in
impact category i.

CIa , i is the characterized impact of alternative a in impact
category i.

NRi is the normalization reference representing a specific
geographical region for impact category i in the
physical units (per year) corresponding characterized
impact CIa , i.

The Handbook on LCA (Guinée et al. 2002) limits appli-
cability of externally normalized results to identify issues
within one single product system, yet the use of externally
normalized results to identify relevant aspects in comparative
LCA (thus multiple product systems) is seen recently in the
literature (Van Hoof et al. 2013; Laurent and Hauschild 2015).
To compare between product systems and across impact cat-
egories, externally normalized results must be weighted,
which provides the basis for aggregation to a single score
(Heijungs et al. 2007; Lautier et al. 2010; Prado et al. 2012).
This practice, although included in the ISO guidelines and the
Handbook on LCA, can have misleading recommendations as
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it is subject to the same biases of external normalization
(Prado et al. 2012; Prado-Lopez et al. 2014).

A comparative LCA is usually decision driven with the
goal of identifying the choice resulting in the least environ-
mental burden. This requires a shift in assessment from abso-
lute impact of alternatives (as done by external normalization)
to relative impact of the decision. Here, the aspects most per-
tinent to the decision are those which differentiate the alterna-
tives (Prado-Lopez et al. 2016). For example, alternatives A
and B may both have large magnitudes for ozone depletion in
comparison to a normalization reference. However, a decision
between A and B can only impact on ozone depletion to the
extent that they are differentiated. If A and B are identical in
characterized ozone equivalents, the decision between them
has no impact on eventual ozone levels, regardless of whether
ozone depletion can be identified as a hotspot.

Another issue in external normalization is that of inverse
proportionality where impact categories with larger regional
emissions generate a smaller normalized impact and are there-
by identified as less relevant (Rogers and Seager 2009; White
and Carty 2010). This inverse proportionality effect between
normalization references and normalized impacts can
introduce systematic biases. In fact, when White and Carty
(2010) evaluated externally normalized results of 800 process-
es taken from Ecoinvent using CMLGlobal 1995 and TRACI
US 2000 normalization references, authors found a bias where
each normalization approach repeatedly highlights the same
set of impact categories regardless of the process inventory.
Specifically, TRACI US 2000 normalization highlights
human toxicity and terrestrial ecotoxicity, whereas CML
Global 1995 references highlights marine ecotoxicity and to
a lesser extent freshwater ecotoxicity. The impact categories
highlighted at normalization were considerably larger than the
rest. To reduce this bias, White and Carty (2010) propose
application of external normalization in combination with in-
ternal normalization by division within a dataset. However,
regardless of the reference value and dataset, external normal-
ization and internal normalization by division exclude uncer-
tainty and apply a linear function that is fully compensatory
(Prado et al. 2012). This means that it is possible for a favor-
able performance in a single impact category to entirely drive
results, hiding multiple poor performances in other areas of
the environment and promoting burden shifting when aggre-
gating to a single score. Moreover, when normalized results
are dominated by a few or a single impact category, weights
will have little influence in the final aggregation, thus gener-
ating scores that may contradict stakeholder preferences.

1.2 Weighting and weight sensitivity

Weighting in LCA reflects stakeholder or decision-maker
values regarding the relative importance of each impact cate-
gory and enables the ranking of alternatives (Huppes et al.

2012; Cortés-Borda et al. 2013). Similar to normalization,
weighting is an optional stage in LCIA that is avoided in most
LCA studies. Given subjectivity concerns, and a general lack
of information regarding decision-maker preferences, most
LCAs truncate results at characterization, at external normal-
ization, or apply Bequal weights^ (Prado-Lopez et al. 2016).
However, where analysis continues beyond these stages,
weight values can be derived from a panel of experts in a
professional field (Gloria et al. 2007), through surveys
(Schmidt et al. 2002), monetization or willingness-to-pay
techniques (Finnveden 1999), linear programming (Cortés-
Borda et al. 2013), and distance-to-target approaches
(Seppälä and Hämäläinen 2001). Alternatively, in the absence
of preference information, novel stochastic approaches in
LCA provide a useful way to sample all possible weight
values without favoring any single impact category thus en-
abling an inclusive view of the problem (Rogers and Seager
2009; Prado-Lopez et al. 2014). However, regardless of the
elicitation process, weighting can remain ineffective given a
linear normalization step (Stewart 2008). When the effects of
the normalization step are too strong, the effects of weighting
become negligible, leading to recommendations that are inde-
pendent of stakeholder values. Previous LCA studies have
already identified instances of weight insensitivity in external
normalization (Rogers and Seager 2009; White and Carty
2010; Cortés-Borda et al. 2013; Myllyviita et al. 2014;
Castellani et al. 2016). For instance, Myllyviita et al. (2014)
evaluates different weight elicitation approaches and finds that
most weights have little influence on the results given external
normalization. This is evidence that weights are subject to the
biases of the previous normalization step. Decision support in
LCA should guide the decision making process, not replace
human judgment entirely. A method that provides a recom-
mendation irrespective of stakeholder input is inadequate for
transparent decision-making. In particular, weight insensitivi-
ty represents a major issue for environmental decision-making
because it can yield results that are unsatisfactory for problems
involving multi-stakeholder groups.

1.3 Overlap area approach

An alternative approach to identify the category indicators
relevant to a decision in a comparative LCA is the overlap
area approach (Prado-Lopez et al. 2016). The overlap area
approach applies to probabilistic characterized results of com-
parative LCAs in any of the LCIA methods. It refers to the
common area between two probability distributions at charac-
terization. It ranges from 0 when alternatives are evidently
different from one another, to 1 when the characterized results
of alternatives are identical. The overlap area focuses on mu-
tual differences and favors those aspects where alternatives are
the most distinguishable from one another. Therefore, the
overlap area does not identify hotspots for improvement
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assessment; rather it is aimed exclusively at supporting selec-
tion in comparative assessments.

The overlap area approach is concerned with finding differ-
ences among alternatives. The premise being that when faced
with a comparison, distinctions drive selection. For example,
given a comparative LCAwhere all alternatives have the same
climate change impact, selection of any alternative results in the
same impacts to climate change regardless of stakeholder
weights. Alternatively, if alternatives have different impacts in
eutrophication, then eutrophication plays a larger role in the
decision as the selection here does matter for eutrophication.
Therefore, these differences, or tradeoffs between alternatives,
measure the impact of the decision. We can measure tradeoff
significance by incorporating the uncertainty of characterized
results and identify the issues where we have the most evidence
that an alternative may be in fact better or worse than another.
That way, the decision is informed by the aspects with the best
resolution and we can save data refinement efforts for those
aspects where uncertainties are the largest. Tradeoff signifi-
cance in a comparative LCA does not necessarily correlate to
hotspots as identified by external normalization since each ap-
proach describes different aspects of the data (Prado-Lopez
et al. 2016). Uncertainties included in the overlap area can be
propagated from inventory and characterization via Monte
Carlo analysis. As more studies provide ways of estimating
these uncertainties (Henriksson et al. 2014; Mendoza Beltran
et al. 2016; Wender et al. 2016), it becomes important to incor-
porate them in the interpretation phase.

Besides the overlap area approach, there are other alterna-
tives to incorporate uncertainty when evaluating mutual differ-
ences in LCA. For instance, discernibility analysis (Heijungs
and Kleijn 2001) counts the times in which one alternative is
greater than another in each Monte Carlo run. Following the
same basis, but illustrating a more extensive approach with
sensitivity analysis is the approach shown in Gregory et al.
(2016). The relevance parameter as introduced in Prado-
Lopez et al. (2014) evaluates the ratio of the differences in
means to the standard deviations. This approach is relatively
simple, but one limitation is that it assumes normal distribu-
tions. Another example can be found in Henriksson et al.
(2015), where authors perform dependent sampling in uncer-
tainty analysis and test hypotheses to evaluate comparative
performances. Finally, the use of reliability theory from engi-
neering science has also been incorporated to LCA for the
purposes of evaluating the superiority of an alternative with
respect to another given probabilistic results (Wei et al. 2016).
However, illustrations of these methods are limited to two al-
ternatives and implementation of thesemethods to comparisons
involving additional alternatives generates increasingly compli-
cated results. That is, a comparison with four alternatives (for
instance, A, B, C, D), generates six sets of results (correspond-
ing to AB, AC, AD, BC, BD, CD) per impact category, making
the interpretation challenging in larger comparative problems.

Unlike these approaches, the overlap area approach can gener-
ate one result per impact category regardless of the number of
alternatives and thus facilitating communication of results
(Prado-Lopez et al. 2016). Therefore, the overlap area serves
as a good example to illustrate a fundamentally distinct ap-
proach to that of external normalization.

2 Methods

This paper presents a methodological evaluation of life cycle
impact assessment (LCIA) that isolates the effect of normali-
zation across multiple LCIA methods and comparative LCA
applications. Three current practices, CML EU25 2006 and
World 2000 (Sleeswijk et al. 2008), ReCiPe midpoint H ver-
sion 1.10 European and World (Goedkoop et al. 2009), and
TRACI US 2008 (Bare 2011; Ryberg et al. 2014) are com-
pared to the overlap area approach in application to four com-
parative LCA studies, and patterns in the results are examined
for evidence of systematic biases. The findings help inform
LCA practitioners of the implications in the choice of normal-
ization methods in comparative assessments.

2.1 Representative applications

Four comparative LCA applications serve as variables to eval-
uate how each approach handles characterized data. These
applications represent broad sectors such as centralized and
distributed energy, construction materials and paper pulp pro-
duction (Table 1). Inventory data for each process included in
these comparative LCA applications derives directly from the
Ecoinvent 3.01 database (Wernet et al. 2016). Refer to the
Electronic Supplementary Material for detailed information
on the inventory.

Probability distributions at characterization used in the
overlap area calculations, derive from an uncertainty anal-
ysis using the Pedigree Matrix coefficients available in
Ecoinvent 3.01 (Lewandowska et al. 2004; Lloyd and
Ries 2007; Muller et al. 2016). Issues particular to the
estimation of uncertainty parameters and issues in imple-
mentation in LCA software packages are out of the scope
of the paper. Rather, we focus on how to take quantitative
uncertainty into account in the interpretation of compara-
tive results. This procedure consisted of 1000 Monte Carlo
runs done separately for each alternative within each com-
parative LCA application using the three LCIA methods
and the goodness-of-fit test implemented in Simapro 8.0
PhD version. Thus, sampling is done independently per
alternative where it is assumed there are no shared process-
es between them. For illustration purposes, uncertainty in
this case derives from the inventory, but it could also be
propagated from characterization factors and methodolog-
ical choices as shown in Mendoza Beltran et al. (2016).
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The more uncertainty sources are included, the larger they
become in the overall result. However, this enhances rather
than limits the importance of comparative uncertainty anal-
ysis. After uncertainty analysis, characterized results con-
sist of lognormal distributions per impact category (mean
and arithmetic standard deviation), rather than a single val-
ue (refer to the Electronic Supplementary Material for
complete set of results at characterization). Fitting of re-
sults to a lognormal distribution is performed by Simapro.
Evaluation of the overlap area is done via a standalone Java
tool, as illustrated in Prado-Lopez et al. (2016).

We isolate the effect of each interpretation approach by
applying each LCIA method to a set of four comparative
LCA applications (Table 1). In this manner, the inventory
and characterization factors remain constant while the in-
terpretation step changes. Here, the independent variable
is the interpretation approach and the results, broken
down by impact category, represent the dependent vari-
able (Fig. 1). For each representative application, we call

attention to the category indicators most salient in each
interpretation approach.

2.2 Salient aspects in external normalization

In external normalization, the most influential impact catego-
ries are those with the largest normalized values. If the same
impact categories continue to be highlighted across the set of
representative examples examined, this may provide evidence
of systematic bias driving interpretation of the results. For
instance, it may be that human toxicity represents 80 and
70% of the total normalized score of alternatives A and B,
respectively. We represent the overall contribution of the hu-
man toxicity category by the average, Θi, in this case, 0.75.
Calculations of overall contributions per category indicator
are given by Eqs. (2) and (3). The contribution of each cate-
gory indicator, Θi describes the extent that each normalized
impact category is highlighted by the normalization reference
across all alternatives in each comparative LCA application.

Table 1 Comparative LCA applications

Comparative LCA application Description Alternatives Functional unit

Photovoltaic technologies (PV) Electricity production of 5 PV technology
alternatives in a 3-kWp slanted-roof installation

Single crystalline silicon cells (single-Si) MJ
Multi crystalline silicon cells (multi-Si)

Thin film cadmium telluride (CdTe)

Amorphous cells (a-Si)

Ribbon silicon (ribbon-Si)

US electric grid mixes (eGrid) High voltage electricity production from the
10 regions in the USA as classified by the
North American Electric Reliability
Corporation (NERC)

Alaska Systems Coordinating
Council (ASCC)

MWh

Florida Reliability Coordinating
Council (FRCC)

Hawaiian Islands Coordinating
Council (HICC)

Midwest Reliability Organization (MRO)

Northeast Power Coordinating
Council (NPCC)

Reliability First Corporation (RFC)

SERC Reliability Company (SERC)

Southwest Power Pool (SPP)

Texas Regional Entity (TRE), and Western

Electricity Coordinating Council (WECC)

Concrete Production of five different lightweight
concrete block materials

Expanded clay kg
Expanded perlite

Expanded vermiculite

Polystyrene

Pumice

Paper pulp Paper pulp production with five
different processes

Chemi-thermomechanical pulp kg
Stone groundwood pulp

Sulfate pulp

Bleached sulfite pulp

Thermomechanical pulp
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Note that externally normalized results are scaled from 0 to 1
when dividing individual result by the sum as shown in
Eq. (2). Although aggregation of externally normalized results
without explicit weighting is not recommended, we do it to
illustrate the effects of normalization. We plot individual nor-
malized contributions with respect to data uncertainty by ar-
ranging category indicators in the x-axis according to the co-
efficient of variation (details in the Electronic Supplementary
Material). The evaluation of external normalization was per-
formed using the mean values of characterized results and the
normalization references without uncertainty estimation to il-
lustrate current practice. Values of externally normalized re-
sults can be found in the Electronic Supplementary Material.
The order of magnitude of externally normalized results tend
to be a miniscule fraction of the normalization reference, thus,
can be considered realistic. However, our critique pertains to
the relative values and how the normalized values of impact
categories can be order of magnitudes apart.

βa;i ¼
NIa;i
∑
i
NIa;i

ð2Þ

Θi ¼
∑
a
βa;i

n
ð3Þ

where

βa , i is the fraction of each normalized impact to the sum of
the normalized results. This is calculated per impact
category i, per alternative.

NIa , i is the dimensionless normalized impact in impact
category i of alternative a, given by Eq. (1).

Θi is the average contribution per impact category i
across all alternatives within each comparative LCA
application.

n is the number of alternatives within each comparative
LCA application. For example, for the PV
comparative LCA application, n = 5 (Table 1).

2.3 Salient aspects according to the overlap area approach

The most influential impact categories according to the
overlap area approach are those with the most significant
tradeoffs between alternatives (Prado-Lopez et al. 2016).
Tradeoff significance is defined as the mutual differences
between the alternatives at characterization relative to data
uncertainty. Tradeoff significance, Ψi, of each impact cat-
egory is a function of the pairwise overlap areas between
alternatives (Eq. (4)). An impact category with a high
tradeoff significance indicates a significant difference be-
tween alternatives. Impact categories with larger tradeoff
significance become more influential in the assessment.
Values for the overlap area results can be found in the
Electronic Supplementary Material.

Ψ i ¼ 1−
� 2

n n−1ð Þ ∑α∈C Aα ð4Þ

where

Ψi is defined as 1 minus the average overlap area of impact
category i. The B1 minus^ ensures that a higher number
correlates with tradeoff significance. An alternative
mode of visualization can be found in Prado-Lopez et al.
(2016).

n is the number of alternatives within each comparative
LCA application used here to calculate the number of
possible pairs.

Aα is the overlap area of all pairs where G = {1,2,…,n}
represents the set of alternatives and C is the 2
subset of G ({{1, 2}, {1, 3}, …, {n − 1, n}).
Individual overlap areas are a function of the mean
and standard deviations of characterized results.
Calculation details are available in Prado-Lopez
et al. (2016).

Four compara�ve LCA applica�ons

ReCiPe 
midpoint H

CML 
baseline

TRACI

Characteriza�on

Inventory

EU EU 25

Interpreta�on

Results
ReCiPe

World

Overlap 
Area

World 
2000

US 
2008

Overlap 
Area

Overlap
Area

Results
CML

Results
TRACI

Salient category indicators

Fig. 1 Schematic of the methodology evaluating the effects of external
normalization and the overlap area approach in three LCIA methods.
Evaluation starts with four comparative LCA applications; then this
inventory is characterized by three methods: ReCiPe midpoint H, CML
baseline, and TRACI. Each of these methods already contain
normalization references. Within ReCiPe, we evaluate EU and World
normalization references, in CML baseline we evaluate EU25 and
World 2000, and in TRACI we evaluate the US 2008 normalization
reference. In addition, the overlap area approach applies for each set of
characterized results. Results are evaluated per LCIA method to see if
there are any patterns indicative of a bias
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3 Results

Results show the systematic effects of external normalization
and the overlap area in ReCiPe, CML, and TRACI. Figure 2
highlights the impact categories most influential in each LCIA
across all four comparative LCA applications. The x-axis rep-
resents the impact categories within each LCIA method
organized according to the coefficient of variation so that
the impact categories to the right have the largest uncertainty.
The y-axis shows the contribution according to Eq. (3).
Depending on the LCIA, there can be two series in the graphs,
corresponding to a European and global normalization
reference.

Within ReCiPe H Midpoint, EU and World normalization
references highlight toxicity and eutrophication-related im-
pact categories with the exception of natural land transforma-
tion, which is larger when using the EU reference. Impact
categories most salient in EU and World references replicate
across the four LCA applications indicating the possibility of a
systematic bias in the normalization approach. With the ex-
ception of Kasah (2014), this same pattern in ReCiPe exter-
nally normalized results was found in recent LCA applications
such as concentrated solar power (Corona et al. 2014), struc-
tural beams (Ibbotson and Kara 2013), industrial cleaning

products (Kapur et al. 2012), diapers (Mirabella et al. 2013),
laundry detergents (Prado-Lopez et al. 2014), energy recovery
from rice husks (Prasara-A and Grant 2011), and dishwashing
soap (Van Hoof et al. 2013).

Normalization references within CML baseline, EU 25 and
World 2000, reveal that a single impact category, marine
aquatic ecotoxicity, as the most and only dominant impact
category (Fig. 2). Here, the selection of alternatives in each
example (PV, eGrid, concrete, and paper pulp) is determined
by single impact category. A survey of recent publications
from the International Journal of Life Cycle Assessment
reporting normalized impacts from CML supports the finding
that marine aquatic ecotoxicity is the most influential category
in evaluations of water services (Barjoveanu et al. 2014), di-
apers (Mirabella et al. 2013), exterior household walls
(Monteiro and Freire 2012), packing tape (Navajas et al.
2014), thermal insulation (Struhala et al. 2014), and an entire
inventory data library (White and Carty 2010). These results
were also reproduced by Sim et al. (2007) in a food sourcing
application where authors excluded marine aquatic
ecotoxicity from normalized results due to masking of other
aspects. Alternatively, some exceptions can be found in soil
remediation processes (Busset et al. 2012) and pad-dyeing
technology (Yuan et al. 2013).

Fig. 2 The contribution per impact category, Θi, according to
normalization references across the four comparative LCA applications
(top to bottom: PV, eGrid, concrete, and paper pulp) using ReCiPe

midpoint H, CML Baseline, and TRACI LCIA methods (left to right).
The impact categories in the x-axis correspond to each LCIA method and
are arranged according to the average coefficient of variation
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The US 2008 normalization reference within TRACI high-
lights carcinogenics, non-carcinogenics, and ecotoxicity im-
pact categories (Fig. 2). These externally normalized results
are also replicated by Rostkowski et al. (2012) in a bioplastic
example and again byWhite and Carty (2010) in 800 different
processes.

Alternatively, application of the overlap area to the four
comparative LCA application is shown in Fig. 3. The x-axis
represents the impact categories as characterized by ReCiPe,
CML, and TRACI arranged according to the coefficient of
variation. The y-axis measures the tradeoff significance, Ψi,
in each application ranging from 0 to 1 according to Eq. (4).
For example, in the PV comparative LCA application
(individual graph in the top left corner of Fig. 3), the perfor-
mances at characterization of alternatives (CdTe, A-Si, Single-
Si, Multi_Si, and Ribbon-Si) are most different in water de-
pletion (high Ψ) and nearly undistinguishable in freshwater
and marine ecotoxicity (low Ψ) when using ReCiPe character-
ization factors. For each application, the overlap area calls
attention to the most significant differences, the tradeoffs, to
guide the selection process. Unlike in external normalization,
the overlap area results show no clear pattern across

applications. More importantly, the relative scales of tradeoff
significance across impact categories lies within the same or-
der of magnitude. Thus, avoiding an assessment where a few
or a single impact category dominates results.

4 Discussion

The normalization references evaluated in this study show a
systematic bias where the same impact categories are
highlighted regardless of the LCA application, uncertainty or
geographical coverage of the normalization reference. In all
four applications, the use of global or regional normalization
references had little influence in the outcome of the results as
both point out to the same impact categories. Therefore, pre-
vious recommendations on the choice of a normalization ref-
erence fail to avoid bias. Within ReCiPe H midpoint, the
highest normalized contributions in the EU and World nor-
malization references come from freshwater ecotoxicity, ma-
rine ecotoxicity, and human toxicity (Fig. 2). Similarly, both
EU25 and World 2000 normalization references within CML
baseline consistently identify marine aquatic ecotoxicity as the

Fig. 3 Tradeoff significance (y-axis) per impact category in each
application (PV, eGrid, concrete, and paper) and LCIA method
(ReCiPe, CML, and TRACI) according to the overlap area approach.
Tradeoff significance correlates to significant differences between
alternatives. Impact categories in the x-axis correspond to each LCIA

method and are arranged in ascending order according to the average
coefficient of variation (same as in Fig. 2). Thus, the uncertainty in
characterized impacts relative to mean values increases as the impact
categories move right
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largest contributor to normalized scores across all four appli-
cations (Fig. 2). Finally, TRACI US 2008 normalization ref-
erence identifies carcinogenics, ecotoxicity, and non-
carcinogenics the most influential impact categories in all four
comparative LCA applications (Fig. 2). Consistently, the ex-
ternal normalization approaches in the three LCIA methods
highlight toxicity-related impacts. This may be due to the
underestimation of toxicity impacts in the area of coverage
in the normalization reference dataset because of the lack of
emission data and characterization factors. Previous studies
comparing LCIA methods shed light on gaps in characteriza-
tion factors and explain how that may influence the outcome
of results (Huijbregts et al. 2003; Cavalett et al. 2012;
Castellani et al. 2016). For instance, the issue of characteriza-
tion of impacts of metals has been an issue in impact assess-
ment that leads to an overestimation of ecotoxicity impacts as
seen in CML-IA (Ligthart et al. 2004; Heijungs et al. 2007).
Given the consistency of results over diverse applications, it is
unlikely this bias is due to an overestimation at inventory level
in the product system (as newer inventory libraries become
available, this type of evaluation could help point out biases
early on). These and other conceptual issues in normalization
have been discussed extensively in the literature (Bare and
Gloria 2006; Bare et al. 2006; Sleeswijk et al. 2008;
Finnveden et al. 2009; Bare 2009), but what is most
concerning is that these gaps can have such strong influence
on the results. It is also concerning that the results obtained in
this study are shown repeatedly in the recent literature across a
wide range of applications with different temporal and geo-
graphical scales including water systems, steel beams,
cleaning products, and bioenergy.

It is important to have these limitations in mind when
interpreting externally normalized results in improvement as-
sessment. One recommendation is to include hotspot analysis
from outside of LCA and call attention to flows not charac-
terized to complement the analysis and obtain more robust
conclusions (Castellani et al. 2016). Solving issues in data
completion requires extensive and constant data compilation
efforts to achieve a complete and up-to-date normalization
reference (Kim et al. 2013). These efforts, although theoreti-
cally plausible, suffer from great practical challenges as
achieving data completion is an endless, laborious task.
Ideally, a perfect normalization reference will not have such
biases but rather show a more balanced result that varies
across inventories. The questions are then, BHow will we
know when we have an adequate normalization reference?
How can we obtain unbiased results?^ Previous studies have
arbitrarily attempted to scale down normalized data Bpeaks^
as in White and Carty (2010), but such repair efforts lack a
fundamental basis.

Alternatively, the use of planetary boundaries or carrying
capacity based normalization references has been proposed as

a way to provide a better measure of absolute impacts (Bjørn
et al. 2015; Bjørn and Hauschild 2015; Fang et al. 2015). This
can function as some sort of Bthreshold^ that rejects alterna-
tives exceeding such planetary boundaries following a strong
sustainability approach (Janeiro and Patel 2015). The use of
the planetary boundaries can also help prioritize areas for im-
provement and set reduction goals (Sandin et al. 2015).
However, there are some issues remaining with planetary
boundaries that hinder its application in LCA. For instance,
reaching consensus over the planetary boundary per impact
category and scaling to a relevant geographical and/or product
scale. It is also unclear how to deal with impact categories that
exceed established planetary boundaries. With advancements
in these areas, planetary boundaries could serve as a basis for
narrowing down alternatives and complementing existing in-
terpretation approaches for comparative and improvement
assessment.

In contrast to improvement assessment, external normali-
zation remains wholly unsatisfactory for the purposes of com-
parative LCAs, even in the case of complete datasets. The
issues highlighted in the paper concern the practice of external
normalization in any impact assessment beyond the illustrated
three LCIA methods. While more up-to-date inventories,
characterization factors and external normalization reference
datasets may produce slightly different results (Owsianiak
et al. 2014), the fact is that when evaluating competing alter-
natives, any form of external normalization will by definition
fail to evaluate mutual differences. So, while there are more
up-to-date LCIA methods available (such as the ILCD meth-
od), the interpretation approach for comparative LCAs re-
mains limited. Thus, the problem identified in this paper goes
beyond data completion solutions and rather it calls for a par-
adigm shift in the way we approach interpretation of compar-
ative LCAs.

Even in the case of an ideal normalization reference,
external normalization does not evaluate mutual differ-
ences with respect to uncertainty. Thus, it does not high-
light the tradeoffs in a particular decision and changes in
information that may increase or decrease uncertainty
ranges will not influence the results. Currently, the level
of uncertainty that is propagated up to characterization
does not determine whether an impact category is
highlighted or not. For instance, the normalization refer-
ences in ReCiPe and TRACI highlight the impact catego-
ries with the largest coefficient of variation (Fig. 2),
so they can lead to recommendations driven by the
aspects of largest uncertainties. In addition, in the case
of preparing for weighting, external normalization applies
a linear function that allows for a single, or few, impact
categories to dominate the assessment, as seen in previous
cases of weight insensitivity and studies describing com-
pensation in aggregation methods (Rowley et al. 2012).
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Instead, this study calls for decision-driven (Stern and
Fineberg 1996) approaches that evaluate mutual differences
and incorporate data uncertainty in the interpretation of com-
parative results. As shown here, the overlap area uses quanti-
tative uncertainty information, which can derive from inven-
tory, characterization, and/or methodological choices
(Mendoza Beltran et al. 2016). We can identify relevant as-
pects of a comparison with the overlap area between proba-
bility distributions or other approaches that evaluate mutual
differences (Heijungs and Kleijn 2001; Prado-Lopez et al.
2014; Henriksson et al. 2015; Gregory et al. 2016; Wei et al.
2016). These results do not suffer from the systematic biases
of external normalization, as the outputs vary for each LCA
application (Fig. 3). Unlike external normalization, overlap
area results adapt to changes in uncertainty information and
can guide the decision towards those aspects where we have
the most knowledge. Aspects with larger uncertainties that
make alternatives indistinguishable from each other can then
be identified as areas that benefit the most from data refine-
ment efforts (Prado-Lopez et al. 2016).

The overlap area does not serve as a basis for weighting but
it does help illustrate key properties required in alternative
methods of aggregation. Previously, outranking has been pro-
posed as an alternative method of normalization that can serve
as preparation for weighting (Cinelli et al. 2014). Along with
weighting, it allows aggregation of to an overall (probabilistic)
score as shown in Prado-Lopez et al. (2014) and Rogers and
Seager (2009). Outranking evaluates pairwise mutual differ-
ences with respect to uncertainty data of characterized results
and applies a nonlinear function that avoids full compensation
between good and poor performances. Compared to external
normalization, outranking generates results that are more sen-
sitive to different weight ranges (Rogers and Seager 2009).

5 Conclusions

This study shows that the effects of external normalization
may overwhelm differences in inventory and technology ap-
plications. In ReCiPe, CML, and TRACI, external normaliza-
tion highlights the same set of impact categories across four
diverse representative applications even if they utilize distinct
inventories. The same results were found in multiple other
studies in the literature, thus providing further evidence of
these systematic biases. As a consequence, results of external
normalization can lead to recommendations based entirely in
the normalization approach. Therefore, when using external
normalization references for hotspot identification, it should
be done with care and it may be useful to perform some com-
plementary analysis. However, when dealing with multiple
alternatives and tradeoffs between them, as in a comparative
LCA, these systematic biases are an issue that is not resolved
by better data or a different geographical coverage area (as

both regional and global references had biases). External nor-
malization is not suitable for comparative LCA, as the normal-
ization step imposes a linear aggregation among impact cate-
gories that can dominate most weight schemes. In fact, any
type of division by an external reference, whereas it pertains to
total per capita impacts of a community or a particular aspect
such as average per capita nutrition, mobility or energy use,
will by definition fail to evaluate mutual differences and inte-
grate uncertainty in the results. Rather, comparative LCA calls
for a decision-driven approach for evaluation of relevant dif-
ferences that is consistent with internal normalization.

Decision support in a comparative LCA must focus on
evaluating the impact of the decision (e.g., elucidating
tradeoffs) rather than the impact of individual alternatives
(such as hotspot identification). This is achieved by evaluating
mutual differences relative to uncertainty—a practice that has
been adopted in several approaches. This practice is sensitive
to changes in uncertainty of information, frees studies from
issues of data completion in normalization references, enables
prioritization of data refinement, and is sensitive to stakehold-
er and decision-maker values. This study illustrates the over-
lap area as one of the approaches to identify relevant aspects of
a decision and proposes a paradigm shift in the way we ap-
proach interpretation of comparative LCAs.
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