2,203 research outputs found
Climate change rapidly warms and acidifies Australian estuaries.
Climate change is impacting ecosystems worldwide. Estuaries are diverse and important aquatic ecosystems; and yet until now we have lacked information on the response of estuaries to climate change. Here we present data from a twelve-year monitoring program, involving 6200 observations of 166 estuaries along >1100 kilometres of the Australian coastline encompassing all estuary morphologies. Estuary temperatures increased by 2.16 °C on average over 12 years, at a rate of 0.2 °C year-1, with waters acidifying at a rate of 0.09 pH units and freshening at 0.086 PSU year-1. The response of estuaries to climate change is dependent on their morphology. Lagoons and rivers are warming and acidifying at the fastest rate because of shallow average depths and limited oceanic exchange. The changes measured are an order of magnitude faster than predicted by global ocean and atmospheric models, indicating that existing global models may not be useful to predict change in estuaries
An Instrumented Walking-Aid to Assess and Retrain Gait
An instrumented walking-aid, the iWA system, has been developed to measure kinematic and kinetic properties of walking aid (WA) use and deliver feedback to improve gait. The clinical requirements, technical specification and design of the system are developed through clinical collaboration. The development of the system is described, including hardware components and data analysis used to process the measured data for assessment. The system measurements are validated under controlled laboratory conditions. The iWA system is evaluated in a typical UK clinical environment by a participant in a rehabilitation session. The resultant data successfully capture the quality of the participant’s walking aid use and agree with clinical opinion, supporting the efficacy of this approach
Vaccination with DNA plasmids expressing Gn coupled to C3d or alphavirus replicons expressing Gn protects mice against rift valley fever virus
Background: Rift Valley fever (RVF) is an arthropod-borne viral zoonosis. Rift Valley fever virus (RVFV) is an important biological threat with the potential to spread to new susceptible areas. In addition, it is a potential biowarfare agent. Methodology/Principal Findings: We developed two potential vaccines, DNA plasmids and alphavirus replicons, expressing the Gn glycoprotein of RVFV alone or fused to three copies of complement protein, C3d. Each vaccine was administered to mice in an all DNA, all replicon, or a DNA prime/replicon boost strategy and both the humoral and cellular responses were assessed. DNA plasmids expressing Gn-C3d and alphavirus replicons expressing Gn elicited high titer neutralizing antibodies that were similar to titers elicited by the live-attenuated MP12 virus. Mice vaccinated with an inactivated form of MP12 did elicit high titer antibodies, but these antibodies were unable to neutralize RVFV infection. However, only vaccine strategies incorporating alphavirus replicons elicited cellular responses to Gn. Both vaccines strategies completely prevented weight loss and morbidity and protected against lethal RVFV challenge. Passive transfer of antisera from vaccinated mice into naïve mice showed that both DNA plasmids expressing Gn-C3d and alphavirus replicons expressing Gn elicited antibodies that protected mice as well as sera from mice immunized with MP12. Conclusion/Significance: These results show that both DNA plasmids expressing Gn-C3d and alphavirus replicons expressing Gn administered alone or in a DNA prime/replicon boost strategy are effective RVFV vaccines. These vaccine strategies provide safer alternatives to using live-attenuated RVFV vaccines for human use. © 2010 Bhardwaj et al
Cervical length and quantitative fetal fibronectin in the prediction of spontaneous preterm birth in asymptomatic women with congenital uterine anomaly
BACKGROUND: Congenital uterine anomalies (CUA) are associated with late miscarriage and spontaneous preterm birth (sPTB). OBJECTIVES: Our aim was to 1) determine the rate of sPTB in each type of CUA and 2) assess the performance of quantitative fetal fibronectin (qfFN) and transvaginal cervical length (CL) measurement by ultrasound in asymptomatic women with CUA for the prediction of sPTB at <34 and <37 weeks of gestation. STUDY DESIGN: This was a retrospective cohort of women with CUA asymptomatic for sPTB, from four UK tertiary referral centres (2001-2016). CUAs were categorised into fusion (unicornuate, didelphic and bicornuate uteri) or resorption defects (septate, with or without resection and arcuate uteri), based on pre-pregnancy diagnosis. All women underwent serial transvaginal ultrasound CL assessment in the second trimester (16 to 24 weeks' gestation); a subgroup underwent qfFN testing from 18 weeks' gestation. We investigated the relationship between CUA and predictive test performance for sPTB before 34 and 37 weeks' gestation. RESULTS: Three hundred and nineteen women were identified as having CUA within our high-risk population. 7% (23/319) delivered spontaneously <34 weeks, and 18% (56/319) <37 weeks' gestation. Rates of sPTB by type were: 26% (7/27) for unicornuate, 21% (7/34) for didelphic, 16% (31/189) for bicornuate, 13% (7/56) for septate and 31% (4/13) for arcuate. 80% (45/56) of women who had sPTB <37 weeks did not develop a short CL (<25 mm) during the surveillance period (16-24 weeks). The diagnostic accuracy of short CL had low sensitivity (20.3) for predicting sPTB <34 weeks. Cervical Length had ROC AUC of 0.56 (95% CI 0.48 to 0.64) and 0.59 (95% CI 0.55 to 0.64) for prediction of sPTB <34 and 37 weeks' respectively. The AUC for CL to predict sPTB <34 weeks was 0.48 for fusion defects (95% CI 0.39 to 0.57) but 0.78 (95% CI 0.66 to 0.91) for women with resorption defects. Overall quantitative fetal fibronectin had a AUC of 0.63 (95% CI 0.49 to 0.77) and 0.58 (95% CI 0.49 to 0.68) for prediction of sPTB <34 and 37 weeks, respectively. AUC for prediction of sPTB <37 weeks with qfFN for fusion defects was 0.52 (95% CI 0.41 to 0.63), but 0.79 (0.63 to 0.95) for women with resorption defects. Results were similar when women with intervention were excluded. CONCLUSION: Commonly used markers CL and qfFN have utility in prediction of sPTB in resorption congenital uterine defects but not in fusion defects. This is contrary to other high-risk populations. These findings need to be accounted for when planning antenatal care and have potential implications for predictive tests used in sPTB surveillance and intervention
Characterization of four subtypes in morphologically normal tissue excised proximal and distal to breast cancer
Widespread mammographic screening programs and improved self-monitoring allow for breast cancer to be detected earlier than ever before. Breast-conserving surgery is a successful treatment for select women. However, up to 40% of women develop local recurrence after surgery despite apparently tumor-free margins. This suggests that morphologically normal breast may harbor early alterations that contribute to increased risk of cancer recurrence. We conducted a comprehensive transcriptomic and proteomic analysis to characterize 57 fresh-frozen tissues from breast cancers and matched histologically normal tissues resected proximal to (<2 cm) and distant from (5–10 cm) the primary tumor, using tissues from cosmetic reduction mammoplasties as baseline. Four distinct transcriptomic subtypes are identified within matched normal tissues: metabolic; immune; matrisome/epithelial–mesenchymal transition, and non-coding enriched. Key components of the subtypes are supported by proteomic and tissue composition analyses. We find that the metabolic subtype is associated with poor prognosis (p < 0.001, HR6.1). Examination of genes representing the metabolic signature identifies several genes able to prognosticate outcome from histologically normal tissues. A subset of these have been reported for their predictive ability in cancer but, to the best of our knowledge, these have not been reported altered in matched normal tissues. This study takes an important first step toward characterizing matched normal tissues resected at pre-defined margins from the primary tumor. Unlocking the predictive potential of unexcised tissue could prove key to driving the realization of personalized medicine for breast cancer patients, allowing for more biologically-driven analyses of tissue margins than morphology alone
Osmoregulators proline and glycine betaine counteract salinity stress in canola
Salt inundation leads to increased salinization of arable land in many arid and semi-arid regions. Until genetic solutions are found farmers and growers must either abandon salt-affected fields or use agronomic treatments that alleviate salt stress symptoms. Here, field experiments were carried out to study the effect of the osmoregulators proline at 200 mg L-1 and glycine betaine at 400 mg L-1 in counteracting the harmful effect of soil salinity stress on canola plants grown in Egypt. We assessed growth characteristics, yield and biochemical constituents. Results show first that all growth characters decreased with increasing salinity stress but applied osmoregulators alleviated these negative effects. Second, salinity stress decreased photosynthetic pigments, K and P contents, whilst increasing proline, soluble sugars, ascorbic acid, Na and Cl contents. Third, application of osmoregulators without salt stress increased photosynthetic pigments, proline, soluble sugars, N, K and P contents whilst decreasing Na and Cl contents. It is concluded that the exogenously applied osmoregulators glycine betaine and proline can fully or partially counteract the harmful effect of salinity stress on growth and yield of canola.© INRA and Springer-Verlag, France 2012
Electrically controlled long-distance spin transport through an antiferromagnetic insulator
Spintronics uses spins, the intrinsic angular momentum of electrons, as an
alternative for the electron charge. Its long-term goal is in the development
of beyond-Moore low dissipation technology devices. Recent progress
demonstrated the long-distance transport of spin signals across ferromagnetic
insulators. Antiferromagnetically ordered materials are however the most common
class of magnetic materials with several crucial advantages over ferromagnetic
systems. In contrast to the latter, antiferromagnets exhibit no net magnetic
moment, which renders them stable and impervious to external fields. In
addition, they can be operated at THz frequencies. While fundamentally their
properties bode well for spin transport, previous indirect observations
indicate that spin transmission through antiferromagnets is limited to short
distances of a few nanometers. Here we demonstrate the long-distance, over tens
of micrometers, propagation of spin currents through hematite (\alpha-Fe2O3),
the most common antiferromagnetic iron oxide, exploiting the spin Hall effect
for spin injection. We control the spin current flow by the interfacial
spin-bias and by tuning the antiferromagnetic resonance frequency with an
external magnetic field. This simple antiferromagnetic insulator is shown to
convey spin information parallel to the compensated moment (N\'eel order) over
distances exceeding tens of micrometers. This newly-discovered mechanism
transports spin as efficiently as the net magnetic moments in the best-suited
complex ferromagnets. Our results pave the way to ultra-fast, low-power
antiferromagnet-insulator-based spin-logic devices that operate at room
temperature and in the absence of magnetic fields
Double-Stranded RNA Attenuates the Barrier Function of Human Pulmonary Artery Endothelial Cells
Circulating RNA may result from excessive cell damage or acute viral infection and can interact with vascular endothelial cells. Despite the obvious clinical implications associated with the presence of circulating RNA, its pathological effects on endothelial cells and the governing molecular mechanisms are still not fully elucidated. We analyzed the effects of double stranded RNA on primary human pulmonary artery endothelial cells (hPAECs). The effect of natural and synthetic double-stranded RNA (dsRNA) on hPAECs was investigated using trans-endothelial electric resistance, molecule trafficking, calcium (Ca2+) homeostasis, gene expression and proliferation studies. Furthermore, the morphology and mechanical changes of the cells caused by synthetic dsRNA was followed by in-situ atomic force microscopy, by vascular-endothelial cadherin and F-actin staining. Our results indicated that exposure of hPAECs to synthetic dsRNA led to functional deficits. This was reflected by morphological and mechanical changes and an increase in the permeability of the endothelial monolayer. hPAECs treated with synthetic dsRNA accumulated in the G1 phase of the cell cycle. Additionally, the proliferation rate of the cells in the presence of synthetic dsRNA was significantly decreased. Furthermore, we found that natural and synthetic dsRNA modulated Ca2+ signaling in hPAECs by inhibiting the sarco-endoplasmic Ca2+-ATPase (SERCA) which is involved in the regulation of the intracellular Ca2+ homeostasis and thus cell growth. Even upon synthetic dsRNA stimulation silencing of SERCA3 preserved the endothelial monolayer integrity. Our data identify novel mechanisms by which dsRNA can disrupt endothelial barrier function and these may be relevant in inflammatory processes
Dissolution dominating calcification process in polar pteropods close to the point of aragonite undersaturation
Thecosome pteropods are abundant upper-ocean zooplankton that build aragonite shells. Ocean acidification results in the lowering of aragonite saturation levels in the surface layers, and several incubation studies have shown that rates of calcification in these organisms decrease as a result. This study provides a weight-specific net calcification rate function for thecosome pteropods that includes both rates of dissolution and calcification over a range of plausible future aragonite saturation states (Omega_Ar). We measured gross dissolution in the pteropod Limacina helicina antarctica in the Scotia Sea (Southern Ocean) by incubating living specimens across a range of aragonite saturation states for a maximum of 14 days. Specimens started dissolving almost immediately upon exposure to undersaturated conditions (Omega_Ar,0.8), losing 1.4% of shell mass per day. The observed rate of gross dissolution was different from that predicted by rate law kinetics of aragonite dissolution, in being higher at Var levels slightly above 1 and lower at Omega_Ar levels of between 1 and 0.8. This indicates that shell mass is affected by even transitional levels of saturation, but there is, nevertheless, some partial means of protection for shells when in undersaturated conditions. A function for gross dissolution against Var derived from the present observations was compared to a function for gross calcification derived by a different study, and showed that dissolution became the dominating process even at Omega_Ar levels close to 1, with net shell growth ceasing at an Omega_Ar of 1.03. Gross dissolution increasingly dominated net change in shell mass as saturation levels decreased below 1. As well as influencing their viability, such dissolution of pteropod shells in the surface layers will result in slower sinking velocities and decreased carbon and carbonate fluxes to the deep ocean
- …