15 research outputs found

    Regulation of CR3 (CD11b/CD18)-dependent natural killer (NK) cell cytotoxicity by tumour target cell MHC class I molecules

    No full text
    Phagocyte and NK cell CR3 functions as both an adhesion molecule and an iC3b receptor mediating cytotoxic responses to microorganisms. Cytotoxic activation of iC3b receptor function requires ligation of both a CD11b I-domain site for iC3b and a lectin site located in the C-terminus of CD11b. Because tumours lack the CR3-binding polysaccharides of bacteria and fungi, iC3b-opsonized tumours do not stimulate CR3-dependent cytotoxicity. Previous studies showed that NK cells could be induced to kill iC3b-opsonized tumours with small soluble β-glucans that bound with high affinity to CR3, bypassing the absence of similar polysaccharides on tumour membranes. Because CR3 signalling requires several tyrosine phosphorylation events, it appeared possible that CR3-dependent killing of autologous tumour cells might be suppressed by NK cell inhibitory receptors for MHC class I (KIR and CD94/NKG2) whose action involves recruitment of SHP-1 and SHP-2 tyrosine phosphatases. In the current study, Epstein–Barr virus (EBV)-transformed B cells were used as targets following opsonization with iC3b. Soluble β-glucan primed CR3 for killing of iC3b-coated B cells, but autologous class I-bearing targets were 84% more resistant than class I-deficient Daudi cells. Blockade of target cell class I with a MoAb specific for a domain recognized by both KIR and CD94/NKG2 resulted in comparable killing of class I+ B cells. By contrast, another MoAb to class II had no effect on cytotoxicity. These data suggest that NK cell recognition of class I suppresses CR3/tyrosine kinase-dependent cytotoxicity in the same way as it suppresses cytotoxicity mediated by other tyrosine kinase-linked receptors such as FcγRIIIA (CD16)

    Normal Human Fibroblasts Express Pattern Recognition Receptors for Fungal (1→3)-β-d-Glucans

    No full text
    Fungal cell wall glucans nonspecifically stimulate various aspects of innate immunity. Glucans are thought to mediate their effects via interaction with membrane receptors on macrophages, neutrophils, and NK cells. There have been no reports of glucan receptors on nonimmune cells. We investigated the binding of a water-soluble glucan in primary cultures of normal human dermal fibroblasts (NHDF). Membranes from NHDF exhibited saturable binding with an apparent dissociation constant (K(D)) of 8.9 ± 1.9 μg of protein per ml and a maximum binding of 100 ± 8 resonance units. Competition studies demonstrated the presence of at least two glucan binding sites on NHDF. Glucan phosphate competed for all binding sites, with a K(D) of 5.6 μM (95% confidence interval [CI], 3.0 to 11 μM), while laminarin competed for 69% ± 6% of binding sites, with a K(D) of 3.7 μM (95% CI, 1.9 to 7.3 μM). Glucan (1 μg/ml) stimulated fibroblast NF-κB nuclear binding activity and interleukin 6 (IL-6) gene expression in a time-dependent manner. NF-κB was activated at 4, 8, and 12 h, while IL-6 mRNA levels were increased by 48% at 8 h. This is the first report of pattern recognition receptors for glucan on human fibroblasts and the first demonstration of glucan binding sites on cells other than leukocytes. It also provides the first evidence that glucans can directly modulate the functional activity of NHDF. These results provide new insights into the mechanisms by which the host recognizes and responds to fungal (1→3)-β-d-glucans and suggests that the response to glucans may not be confined to cells of the immune system

    Local expression of complement factor I in breast cancer cells correlates with poor survival and recurrence.

    No full text
    Tumor cells often evade killing by the complement system by overexpressing membrane-bound complement inhibitors. However, production of soluble complement inhibitors in cells other than hepatocytes was rarely reported. We screened several breast cancer cell lines for expression of soluble complement inhibitor, complement factor I (FI). We also analyzed local production of FI in tissue microarrays with tumors from 130 breast cancer patients by in situ hybridization and immunohistochemistry. We found expression of FI in breast adenocarcinoma cell line MDA-MB-468 and confirmed its functional activity. Expression of FI at mRNA and protein levels was also confirmed in tumor cells and tumor stroma, both in fibroblasts and infiltrating immune cells. Multivariate Cox regression analyses revealed that high expression of FI protein in tumor cells was correlated with significantly shorter cancer-specific survival (HR 2.8; 95 % CI 1.0-7.5; p = 0.048) and recurrence-free survival (HR 3.4; 95 % CI 1.5-7.4; p = 0.002). High FI expression was positively correlated with tumor size (p < 0.001), and Nottingham histological grade (p = 0.015) and associated with estrogen and progesterone receptor status (p = 0.03 and p = 0.009, respectively). Our data show that FI is expressed in breast cancer and is associated with unfavorable clinical outcome
    corecore