1,375 research outputs found

    Modeling Antarctic tides in response to ice shelf thinning and retreat

    Get PDF
    Tides play an important role in ice sheet dynamics by modulating ice stream velocity, fracturing, and moving ice shelves and mixing water beneath them. Any changes in ice shelf extent or thickness will alter the tidal dynamics through modification of water column thickness and coastal topography but these will in turn feed back onto the overall ice shelf stability. Here, we show that removal or reduction in extent and/or thickness of the Ross and Ronne-Filchner ice shelves would have a significant impact on the tides around Antarctica. The Ronne-Filchner appears particularly vulnerable, with an increase in M2 amplitude of over 0.5 m beneath much of the ice shelf potentially leading to tidally induced feedbacks on ice shelf/sheet dynamics. These results highlight the importance of understanding tidal feedbacks on ice shelves/streams due to their influence on ice sheet dynamics

    Predicting ocean-induced ice-shelf melt rates using deep learning

    Get PDF
    Through their role in buttressing upstream ice flow, Antarctic ice shelves play an important part in regulating future sea-level change. Reduction in ice-shelf buttressing caused by increased ocean-induced melt along their undersides is now understood to be one of the key drivers of ice loss from the Antarctic ice sheet. However, despite the importance of this forcing mechanism, most ice-sheet simulations currently rely on simple melt parameterisations of this ocean-driven process since a fully coupled ice–ocean modelling framework is prohibitively computationally expensive. Here, we provide an alternative approach that is able to capture the greatly improved physical description of this process provided by large-scale ocean-circulation models over currently employed melt parameterisations but with trivial computational expense. This new method brings together deep learning and physical modelling to develop a deep neural network framework, MELTNET, that can emulate ocean model predictions of sub-ice-shelf melt rates. We train MELTNET on synthetic geometries, using the NEMO ocean model as a ground truth in lieu of observations to provide melt rates both for training and for evaluation of the performance of the trained network. We show that MELTNET can accurately predict melt rates for a wide range of complex synthetic geometries, with a normalised root mean squared error of 0.11 m yr−1 compared to the ocean model. MELTNET calculates melt rates several orders of magnitude faster than the ocean model and outperforms more traditional parameterisations for &gt; 96 % of geometries tested. Furthermore, we find MELTNET's melt rate estimates show sensitivity to established physical relationships such as changes in thermal forcing and ice-shelf slope. This study demonstrates the potential for a deep learning framework to calculate melt rates with almost no computational expense, which could in the future be used in conjunction with an ice sheet model to provide predictions for large-scale ice sheet models.</p

    Thermodynamics of self-gravitating systems

    Full text link
    Self-gravitating systems are expected to reach a statistical equilibrium state either through collisional relaxation or violent collisionless relaxation. However, a maximum entropy state does not always exist and the system may undergo a ``gravothermal catastrophe'': it can achieve ever increasing values of entropy by developing a dense and hot ``core'' surrounded by a low density ``halo''. In this paper, we study the phase transition between ``equilibrium'' states and ``collapsed'' states with the aid of a simple relaxation equation [Chavanis, Sommeria and Robert, Astrophys. J. 471, 385 (1996)] constructed so as to increase entropy with an optimal rate while conserving mass and energy. With this numerical algorithm, we can cover the whole bifurcation diagram in parameter space and check, by an independent method, the stability limits of Katz [Mon. Not. R. astr. Soc. 183, 765 (1978)] and Padmanabhan [Astrophys. J. Supp. 71, 651 (1989)]. When no equilibrium state exists, our relaxation equation develops a self-similar collapse leading to a finite time singularity.Comment: 54 pages. 25 figures. Submitted to Phys. Rev.

    Continuous Uniform Finite Time Stabilization of Planar Controllable Systems

    Get PDF
    Continuous homogeneous controllers are utilized in a full state feedback setting for the uniform finite time stabilization of a perturbed double integrator in the presence of uniformly decaying piecewise continuous disturbances. Semiglobal strong C1\mathcal{C}^1 Lyapunov functions are identified to establish uniform asymptotic stability of the closed-loop planar system. Uniform finite time stability is then proved by extending the homogeneity principle of discontinuous systems to the continuous case with uniformly decaying piecewise continuous nonhomogeneous disturbances. A finite upper bound on the settling time is also computed. The results extend the existing literature on homogeneity and finite time stability by both presenting uniform finite time stabilization and dealing with a broader class of nonhomogeneous disturbances for planar controllable systems while also proposing a new class of homogeneous continuous controllers

    The electromagnetic calorimeter of the AMS-02 experiment

    Full text link
    The electromagnetic calorimeter (ECAL) of the AMS-02 experiment is a 3-dimensional sampling calorimeter, made of lead and scintillating fibers. The detector allows for a high granularity, with 18 samplings in the longitudinal direction, and 72 sampling in the lateral direction. The ECAL primary goal is to measure the energy of cosmic rays up to few TeV, however, thanks to the fine grained structure, it can also provide the separation of positrons from protons, in the GeV to TeV region. A direct measurement of high energy photons with accurate energy and direction determination can also be provided.Comment: Proceedings of SF2A conference 201

    Relaxation equations for two-dimensional turbulent flows with a prior vorticity distribution

    Full text link
    Using a Maximum Entropy Production Principle (MEPP), we derive a new type of relaxation equations for two-dimensional turbulent flows in the case where a prior vorticity distribution is prescribed instead of the Casimir constraints [Ellis, Haven, Turkington, Nonlin., 15, 239 (2002)]. The particular case of a Gaussian prior is specifically treated in connection to minimum enstrophy states and Fofonoff flows. These relaxation equations are compared with other relaxation equations proposed by Robert and Sommeria [Phys. Rev. Lett. 69, 2776 (1992)] and Chavanis [Physica D, 237, 1998 (2008)]. They can provide a small-scale parametrization of 2D turbulence or serve as numerical algorithms to compute maximum entropy states with appropriate constraints. We perform numerical simulations of these relaxation equations in order to illustrate geometry induced phase transitions in geophysical flows.Comment: 21 pages, 9 figure

    Critical dynamics of self-gravitating Langevin particles and bacterial populations

    Full text link
    We study the critical dynamics of the generalized Smoluchowski-Poisson system (for self-gravitating Langevin particles) or generalized Keller-Segel model (for the chemotaxis of bacterial populations). These models [Chavanis & Sire, PRE, 69, 016116 (2004)] are based on generalized stochastic processes leading to the Tsallis statistics. The equilibrium states correspond to polytropic configurations with index nn similar to polytropic stars in astrophysics. At the critical index n3=d/(d−2)n_{3}=d/(d-2) (where d≄2d\ge 2 is the dimension of space), there exists a critical temperature Θc\Theta_{c} (for a given mass) or a critical mass McM_{c} (for a given temperature). For Θ>Θc\Theta>\Theta_{c} or M<McM<M_{c} the system tends to an incomplete polytrope confined by the box (in a bounded domain) or evaporates (in an unbounded domain). For Θ<Θc\Theta<\Theta_{c} or M>McM>M_{c} the system collapses and forms, in a finite time, a Dirac peak containing a finite fraction McM_c of the total mass surrounded by a halo. This study extends the critical dynamics of the ordinary Smoluchowski-Poisson system and Keller-Segel model in d=2d=2 corresponding to isothermal configurations with n3→+∞n_{3}\to +\infty. We also stress the analogy between the limiting mass of white dwarf stars (Chandrasekhar's limit) and the critical mass of bacterial populations in the generalized Keller-Segel model of chemotaxis

    Anomalous diffusion and collapse of self-gravitating Langevin particles in D dimensions

    Full text link
    We address the generalized thermodynamics and the collapse of a system of self-gravitating Langevin particles exhibiting anomalous diffusion in a space of dimension D. The equilibrium states correspond to polytropic distributions. The index n of the polytrope is related to the exponent of anomalous diffusion. We consider a high-friction limit and reduce the problem to the study of the nonlinear Smoluchowski-Poisson system. We show that the associated Lyapunov functional is the Tsallis free energy. We discuss in detail the equilibrium phase diagram of self-gravitating polytropes as a function of D and n and determine their stability by using turning points arguments and analytical methods. When no equilibrium state exists, we investigate self-similar solutions describing the collapse. These results can be relevant for astrophysical systems, two-dimensional vortices and for the chemotaxis of bacterial populations. Above all, this model constitutes a prototypical dynamical model of systems with long-range interactions which possesses a rich structure and which can be studied in great detail.Comment: Submitted to Phys. Rev.

    Search for a 33.9 MeV/c^2 Neutral Particle in Pion Decay

    Get PDF
    The E815 (NuTeV) neutrino experiment has performed a search for a 33.9 MeV/c^2 weakly-interacting neutral particle produced in pion decay. Such a particle may be responsible for an anomaly in the timing distribution of neutrino interactions in the KARMEN experiment. E815 has searched for this particle's decays in an instrumented decay region; no evidence for this particle was found. The search is sensitive to pion branching ratios as low as 10^-13.Comment: 4 pages; 5 figure

    The HPS electromagnetic calorimeter

    Get PDF
    The Heavy Photon Search experiment (HPS) is searching for a new gauge boson, the so-called “heavy photon.” Through its kinetic mixing with the Standard Model photon, this particle could decay into an electron-positron pair. It would then be detectable as a narrow peak in the invariant mass spectrum of such pairs, or, depending on its lifetime, by a decay downstream of the production target. The HPS experiment is installed in Hall-B of Jefferson Lab. This article presents the design and performance of one of the two detectors of the experiment, the electromagnetic calorimeter, during the runs performed in 2015–2016. The calorimeter's main purpose is to provide a fast trigger and reduce the copious background from electromagnetic processes through matching with a tracking detector. The detector is a homogeneous calorimeter, made of 442 lead-tungstate (PbWO4) scintillating crystals, each read out by an avalanche photodiode coupled to a custom trans-impedance amplifier
    • 

    corecore