5 research outputs found

    COPDGene® 2019: Redefining the Diagnosis of Chronic Obstructive Pulmonary Disease

    Get PDF
    Background:Chronic obstructive pulmonary disease (COPD) remains a major cause of morbidity and mortality. Present-day diagnostic criteria are largely based solely on spirometric criteria. Accumulating evidence has identified a substantial number of individuals without spirometric evidence of COPD who suffer from respiratory symptoms and/or increased morbidity and mortality. There is a clear need for an expanded definition of COPD that is linked to physiologic, structural (computed tomography [CT]) and clinical evidence of disease. Using data from the COPD Genetic Epidemiology study (COPDGene®), we hypothesized that an integrated approach that includes environmental exposure, clinical symptoms, chest CT imaging and spirometry better defines disease and captures the likelihood of progression of respiratory obstruction and mortality. Methods:Four key disease characteristics - environmental exposure (cigarette smoking), clinical symptoms (dyspnea and/or chronic bronchitis), chest CT imaging abnormalities (emphysema, gas trapping and/or airway wall thickening), and abnormal spirometry - were evaluated in a group of 8784 current and former smokers who were participants in COPDGene® Phase 1. Using these 4 disease characteristics, 8 categories of participants were identified and evaluated for odds of spirometric disease progression (FEV1 > 350 ml loss over 5 years), and the hazard ratio for all-cause mortality was examined. Results:Using smokers without symptoms, CT imaging abnormalities or airflow obstruction as the reference population, individuals were classified as Possible COPD, Probable COPD and Definite COPD. Current Global initiative for obstructive Lung Disease (GOLD) criteria would diagnose 4062 (46%) of the 8784 study participants with COPD. The proposed COPDGene® 2019 diagnostic criteria would add an additional 3144 participants. Under the new criteria, 82% of the 8784 study participants would be diagnosed with Possible, Probable or Definite COPD. These COPD groups showed increased risk of disease progression and mortality. Mortality increased in patients as the number of their COPD characteristics increased, with a maximum hazard ratio for all cause-mortality of 5.18 (95% confidence interval [CI]: 4.15-6.48) in those with all 4 disease characteristics. Conclusions:A substantial portion of smokers with respiratory symptoms and imaging abnormalities do not manifest spirometric obstruction as defined by population normals. These individuals are at significant risk of death and spirometric disease progression. We propose to redefine the diagnosis of COPD through an integrated approach using environmental exposure, clinical symptoms, CT imaging and spirometric criteria. These expanded criteria offer the potential to stimulate both current and future interventions that could slow or halt disease progression in patients before disability or irreversible lung structural changes develop

    The Swiss cohort of elderly patients with venous thromboembolism (SWITCO65+): rationale and methodology

    Get PDF
    Venous thromboembolism (VTE) is common and has a high impact on morbidity, mortality, and costs of care. Although most of the patients with VTE are aged ≥65 years, there is little data about the medical outcomes in the elderly with VTE. The Swiss Cohort of Elderly Patients with VTE (SWITCO65+) is a prospective multicenter cohort study of in- and outpatients aged ≥65 years with acute VTE from all five Swiss university and four high-volume non-university hospitals. The goal is to examine which clinical and biological factors and processes of care drive short- and long-term medical outcomes, health-related quality of life, and medical resource utilization in elderly patients with acute VTE. The cohort also includes a large biobank with biological material from each participant. From September 2009 to March 2012, 1,863 elderly patients with VTE were screened and 1003 (53.8 %) were enrolled in the cohort. Overall, 51.7 % of patients were aged ≥75 years and 52.7 % were men. By October 16, 2012, after an average follow-up time of 512 days, 799 (79.7 %) patients were still actively participating. SWITCO65+ is a unique opportunity to study short- and long-term outcomes in elderly patients with VTE. The Steering Committee encourages national and international collaborative research projects related to SWITCO65+, including sharing anonymized data and biological samples

    The Cerebellum, Cerebellar Disorders, and Cerebellar Research—Two Centuries of Discoveries

    No full text
    Research on the cerebellum is evolving rapidly. The exquisiteness of the cerebellar circuitry with a unique geometric arrangement has fascinated researchers from numerous disciplines. The painstaking works of pioneers of these last two centuries, such as Rolando, Flourens, Luciani, Babinski, Holmes, Cajal, Larsell, or Eccles, still exert a strong influence in the way we approach cerebellar functions. Advances in genetic studies, detailed molecular and cellular analyses, profusion of brain imaging techniques, emergence of behavioral assessments, and reshaping of models of cerebellar function are generating an immense amount of knowledge. Simultaneously, a better definition of cerebellar disorders encountered in the clinic is emerging. The essentials of a trans-disciplinary blending are expanding. The analysis of the literature published these last two decades indicates that the gaps between domains of research are vanishing. The launch of the society for research on the cerebellum (SRC) illustrates how cerebellar research is burgeoning. This special issue gathers the contributions of the inaugural conference of the SRC dedicated to the mechanisms of cerebellar function. Contributions were brought together around five themes: (1) cerebellar development, death, and regeneration; (2) cerebellar circuitry: processing and function; (3) mechanisms of cerebellar plasticity and learning; (4) cerebellar function: timing, prediction, and/or coordination? (5) anatomical and disease perspectives on cerebellar function.Historical ArticleJournal ArticleReviewSCOPUS: re.jinfo:eu-repo/semantics/publishe

    DIII-D research advancing the physics basis for optimizing the tokamak approach to fusion energy

    Get PDF
    Funding Information: This material is based upon work supported by the US Department of Energy, Office of Science, Office of Fusion Energy Sciences, using the DIII-D National Fusion Facility, a DOE Office of Science user facility, under Awards DE-FC02-04ER54698 and DE-AC52-07NA27344. Publisher Copyright: © 2022 IAEA, Vienna.DIII-D physics research addresses critical challenges for the operation of ITER and the next generation of fusion energy devices. This is done through a focus on innovations to provide solutions for high performance long pulse operation, coupled with fundamental plasma physics understanding and model validation, to drive scenario development by integrating high performance core and boundary plasmas. Substantial increases in off-axis current drive efficiency from an innovative top launch system for EC power, and in pressure broadening for Alfven eigenmode control from a co-/counter-I p steerable off-axis neutral beam, all improve the prospects for optimization of future long pulse/steady state high performance tokamak operation. Fundamental studies into the modes that drive the evolution of the pedestal pressure profile and electron vs ion heat flux validate predictive models of pedestal recovery after ELMs. Understanding the physics mechanisms of ELM control and density pumpout by 3D magnetic perturbation fields leads to confident predictions for ITER and future devices. Validated modeling of high-Z shattered pellet injection for disruption mitigation, runaway electron dissipation, and techniques for disruption prediction and avoidance including machine learning, give confidence in handling disruptivity for future devices. For the non-nuclear phase of ITER, two actuators are identified to lower the L-H threshold power in hydrogen plasmas. With this physics understanding and suite of capabilities, a high poloidal beta optimized-core scenario with an internal transport barrier that projects nearly to Q = 10 in ITER at ∼8 MA was coupled to a detached divertor, and a near super H-mode optimized-pedestal scenario with co-I p beam injection was coupled to a radiative divertor. The hybrid core scenario was achieved directly, without the need for anomalous current diffusion, using off-axis current drive actuators. Also, a controller to assess proximity to stability limits and regulate β N in the ITER baseline scenario, based on plasma response to probing 3D fields, was demonstrated. Finally, innovative tokamak operation using a negative triangularity shape showed many attractive features for future pilot plant operation.Peer reviewe
    corecore