17,829 research outputs found

    Unravelling the Mysteries of the Leo Ring: An Absorption Line Study of an Unusual Gas Cloud

    Full text link
    Since the 1980's discovery of the large (2x10^9 Msun) intergalactic cloud known as the Leo Ring, this object has been the center of a lively debate about its origin. Determining the origin of this object is still important as we develop a deeper understanding of the accretion and feedback processes that shape galaxy evolution. We present HST/COS observations of three sightlines near the Ring, two of which penetrate the high column density neutral hydrogen gas visible in 21 cm observations of the object. These observations provide the first direct measurement of the metallicity of the gas in the Ring, an important clue to its origins. Our best estimate of the metallicity of the ring is ~10% Zsun, higher than expected for primordial gas but lower than expected from an interaction. We discuss possible modifications to the interaction and primordial gas scenarios that would be consistent with this metallicity measurement.Comment: 11 pages, 7 figures, accepted Ap

    Resolution-enhanced Mapping Spectrometer

    Get PDF
    A familiar mapping spectrometer implementation utilizes two dimensional detector arrays with spectral dispersion along one direction and spatial along the other. Spectral images are formed by spatially scanning across the scene (i.e., push-broom scanning). For imaging grating and prism spectrometers, the slit is perpendicular to the spatial scan direction. For spectrometers utilizing linearly variable focal-plane-mounted filters the spatial scan direction is perpendicular to the direction of spectral variation. These spectrometers share the common limitation that the number of spectral resolution elements is given by the number of pixels along the spectral (or dispersive) direction. Resolution enhancement by first passing the light input to the spectrometer through a scanned etalon or Michelson is discussed. Thus, while a detector element is scanned through a spatial resolution element of the scene, it is also temporally sampled. The analysis for all the pixels in the dispersive direction is addressed. Several specific examples are discussed. The alternate use of a Michelson for the same enhancement purpose is also discussed. Suitable for weight constrained deep space missions, hardware systems were developed including actuators, sensor, and electronics such that low-resolution etalons with performance required for implementation would weigh less than one pound

    A 10 GHz Quasi-Optical Grid Amplifier Using Integrated HBT Differential Pairs

    Get PDF
    We report the fabrication and testing of a 10 GHz grid amplifier utilizing sixteen GaAs chips each containing an HBT differential pair plus integral bias/feedback resistors. The overall amplifier consists of a 4x4 array of unit cells on an RT Duroid™ board having a relative permittivity of 2.2. Each unit cell consists of an emitter-coupled differential pair at the center, an input antenna which extends horizontally in both directions from the two base leads, an output antenna which extends vertically in both directions from the two collector leads, and high inductance bias lines. In operation, the active grid array is placed between a pair of crossed polarizers. The horizontally polarized input wave passes through the input polarizer and couples to the input leads. An amplified current then flows on the vertical leads, which radiate a vertically polarized amplified signal through the output polarizer. The polarizers serve dual functions, providing both input-output isolation as well as independent impedance matching for the input and output ports. The grid thus functions essentially as a free-space beam amplifier. Calculations indicate that output powers of several watts per square centimeter of grid area should be attainable with optimized structures

    Beta lives - some statistical perspectives on the capital asset pricing model

    Get PDF
    This note summarizes some technical issues relevant to the use of the idea of excess return in empirical modelling. We cover the case where the aim is to construct a measure of expected return on an asset and a model of the CAPM type is used. We review some of the problems and show examples where the basic CAPM may be used to develop other results which relate the expected returns on assets both to the expected return on the market and other factors

    Pfleiderer2: identification of a new globular cluster in the Galaxy

    Full text link
    We provide evidence that indicate the star cluster Pfleiderer 2, which is projected in a rich field, as a newly identified Galactic globular cluster. Since it is located in a crowded field, core extraction and decontamination tools were applied to reveal the cluster sequences in B, V and I Color-Magnitude Diagrams (CMDs). The main CMD features of Pfleiderer 2 are a tilted Red Giant Branch, and a red Horizontal Branch, indicating a high metallicity around solar. The reddening is E(B-V)=1.01. The globular cluster is located at a distance from the Sun d_{\odot} = 16±\pm2 kpc. The cluster is located at 2.7 kpc above the Galactic plane and at a distance from the Galactic center of RGC_{\rm GC}=9.7 kpc, which is unusual for a metal-rich globular cluster.Comment: Accepted by The Astronomical Journa

    The Diverse Infrared Properties of a Complete Sample of Star-Forming Dwarf Galaxies

    Full text link
    We present mid-infrared Spitzer Space Telescope observations of a complete sample of star-forming dwarf galaxies selected from the KPNO International Spectroscopic Survey. The galaxies span a wide range in mid-infrared properties. Contrary to expectations, some of the galaxies emit strongly at 8 micron indicating the presence of hot dust and/or PAHs. The ratio of this mid-infrared dust emission to the stellar emission is compared with the galaxies' luminosity, star-formation rate, metallicity, and optical reddening. We find that the strength of the 8.0 micron dust emission to the stellar emission ratio is more strongly correlated with the star-formation rate than it is with the metallicity or the optical reddening in these systems. Nonetheless, there is a correlation between the 8.0 micron luminosity and metallicity. The slope of this luminosity-metallicity correlation is shallower than corresponding ones in the B-band and 3.6 micron. The precise nature of the 8.0 micron emission seen in these galaxies (i.e., PAH versus hot dust or some combination of the two) will require future study, including deep mid-IR spectroscopy.Comment: 14 pages, accepted Ap

    Clusterin protects against oxidative stress in vitro through aggregative and nonaggregative properties

    Get PDF
    Clusterin protects against oxidative stress in vitro through aggregative and nonaggregative properties. Perturbations of cell interactions, an early event in acute renal injury, have important pathophysiologic consequences. We hypothesized that promotion of cell interactions protects cells from injury. To test this hypothesis, a single cell suspension of LLC-PK1 cells (porcine proximal tubular cell line) treated with albumin (control) was compared to cells aggregated with fibrinogen or purified human clusterin (aggregation graded 0 to 4). Following aggregation, the cells were injured with 1.5 mM hydrogen peroxide (H2O2) for three hours. Cell aggregation induced by clusterin but not fibrinogen protected against oxidant injury by H2O2. Complete abrogation of cytotoxicity occurred at a clusterin concentration of 2.5 μg/ml, which resulted in an aggregation score of 1. In the absence of aggregation, clusterin at concentrations of 20 and 50 μg/ml, but not lower doses, partially protected against injury induced by H2O2. Cell aggregation induced by both clusterin and fibrinogen partially protected against endogenously generated oxidant stress induced by incubating LLC-PK1 cells with aminotriazole and 1-chloro-2,4-dinitrobenzene (CDNB). In conclusion, clusterin protects against models of oxidant stress in vitro, whether generated by exogenously administered hydrogen peroxide, or from endogenously produced peroxide, and such protective effects can accrue from aggregative and nonaggregative properties of clusterin

    Quantum Equivalence of Massive Antisymmetric Tensor Field Models in Curved Space

    Full text link
    We study the effective actions for massive rank-2 and rank-3 antisymmetric tensor field models in curved space-time. These models are classically equivalent to massive vector field and massive scalar field with minimal coupling to gravity respectively. We prove that effective action for massive rank-2 antisymmetric tensor field is exactly equal to one for massive vector field and effective action for massive rank-3 antisymmetric tensor field is exactly equal to one for massive scalar field. Prove is based on an identity for mass-dependent zeta-functions associated with Laplacians acting on pp-forms.Comment: 8 pages, REVTeX fil
    corecore