30,460 research outputs found
Evidence for Bolgiano-Obukhov scaling in rotating stratified turbulence using high-resolution direct numerical simulations
We report results on rotating stratified turbulence in the absence of
forcing, with large-scale isotropic initial conditions, using direct numerical
simulations computed on grids of up to 4096^3 points. The Reynolds and Froude
numbers are respectively equal to Re=5.4 x 10^4 and Fr=0.0242. The ratio of the
Brunt-V\"ais\"al\"a to the inertial wave frequency, N/f, is taken to be equal
to 4.95, a choice appropriate to model the dynamics of the southern abyssal
ocean at mid latitudes. This gives a global buoyancy Reynolds number
R_B=ReFr^2=32, a value sufficient for some isotropy to be recovered in the
small scales beyond the Ozmidov scale, but still moderate enough that the
intermediate scales where waves are prevalent are well resolved. We concentrate
on the large-scale dynamics, for which we find a spectrum compatible with the
Bolgiano-Obukhov scaling, and confirm that the Froude number based on a typical
vertical length scale is of order unity, with strong gradients in the vertical.
Two characteristic scales emerge from this computation, and are identified from
sharp variations in the spectral distribution of either total energy or
helicity. A spectral break is also observed at a scale at which the partition
of energy between the kinetic and potential modes changes abruptly, and beyond
which a Kolmogorov-like spectrum recovers. Large slanted layers are ubiquitous
in the flow in the velocity and temperature fields, with local overturning
events indicated by small Richardson numbers, and a small large-scale
enhancement of energy directly attributable to the effect of rotation is also
observed.Comment: 19 pages, 9 figures (including compound figures
Advanced cogeneration research study: Executive summary
This study provides a broad based overview of selected areas relevant to the development of a comprehensive Southern California Edison (SCE) advanced cogeneration project. The areas studied are: (1) Cogeneration potential in the SCE service territory; (2) Advanced cogeneration technologies; and (3) Existing cogeneration computer models. An estimated 3700 MW sub E could potentially be generated from existing industries in the Southern California Edison service territory using cogeneration technology. Of this total, current technology could provide 2600 MW sub E and advanced technology could provide 1100 MW sub E. The manufacturing sector (SIC Codes 20-39) was found to have the highest average potential for current cogeneration technology. The mining sector (SIC Codes 10-14) was found to have the highest potential for advanced technology
Galactic Globular Cluster Relative Ages
Based on a new large, homogeneous photometric database of 35 Galactic
globular clusters (GGCs), a set of distance and reddening independent relative
age indicators has been measured. The observed D(V-I)_2.5 and D(V)(HB-TO) vs.
metallicity relations have been compared with the relations predicted by two
recent updated libraries of isochrones. Using these models and two independent
methods, we have found that self-consistent relative ages can be estimated for
our GGC sample. Based on the relative age vs. metallicity distribution, we
conclude that: (a) there is no evidence of an age spread for clusters with
[Fe/H]<-1.2, all the clusters of our sample in this range being old and coeval;
(b) for the intermediate metallicity group (-1.2<=[Fe/H]<-0.9) there is a clear
evidence of age dispersion, with clusters up to ~25% younger than the older
members; and (c) the clusters within the metal rich group ([Fe/H]>=-0.9) seem
to be coeval within the uncertainties (except Pal12), but younger (~17%) than
the bulk of the Galactic globulars. The latter result is totally model
dependent. From the distribution of the GGC ages with the Galactocentric
distance, we can present a possible scenario for the Milky Way formation: The
GC formation process started at the same zero age throughout the halo, at least
out to ~20 kpc from the Galactic center. According to the present stellar
evolution models, the metal-rich globulars are formed at a later time (~ 17%
lower age). And finally, significantly younger halo GGCs are found at any
R(GC)>8 kpc. For these, a possible scenario associated with mergers of dwarf
galaxies to the Milky Way is suggested.Comment: 47 pages, 9 figures. To be published in the Astronomical Journal,
November issu
A paradigmatic flow for small-scale magnetohydrodynamics: properties of the ideal case and the collision of current sheets
We propose two sets of initial conditions for magnetohydrodynamics (MHD) in
which both the velocity and the magnetic fields have spatial symmetries that
are preserved by the dynamical equations as the system evolves. When
implemented numerically they allow for substantial savings in CPU time and
memory storage requirements for a given resolved scale separation. Basic
properties of these Taylor-Green flows generalized to MHD are given, and the
ideal non-dissipative case is studied up to the equivalent of 2048^3 grid
points for one of these flows. The temporal evolution of the logarithmic
decrements, delta, of the energy spectrum remains exponential at the highest
spatial resolution considered, for which an acceleration is observed briefly
before the grid resolution is reached. Up to the end of the exponential decay
of delta, the behavior is consistent with a regular flow with no appearance of
a singularity. The subsequent short acceleration in the formation of small
magnetic scales can be associated with a near collision of two current sheets
driven together by magnetic pressure. It leads to strong gradients with a fast
rotation of the direction of the magnetic field, a feature also observed in the
solar wind.Comment: 8 pages, 4 figure
Finite energy shifts in SU(n) supersymmetric Yang-Mills theory on T^3xR at weak coupling
We consider a semi-classical treatment, in the regime of weak gauge coupling,
of supersymmetric Yang-Mills theory in a space-time of the form T^3xR with
SU(n)/Z_n gauge group and a non-trivial gauge bundle. More specifically, we
consider the theories obtained as power series expansions around a certain
class of normalizable vacua of the classical theory, corresponding to isolated
points in the moduli space of flat connections, and the perturbative
corrections to the free energy eigenstates and eigenvalues in the weakly
interacting theory. The perturbation theory construction of the interacting
Hilbert space is complicated by the divergence of the norm of the interacting
states. Consequently, the free and interacting Hilbert furnish unitarily
inequivalent representation of the algebra of creation and annihilation
operators of the quantum theory. We discuss a consistent redefinition of the
Hilbert space norm to obtain the interacting Hilbert space and the properties
of the interacting representation. In particular, we consider the lowest
non-vanishing corrections to the free energy spectrum and discuss the crucial
importance of supersymmetry for these corrections to be finite.Comment: 31 pages, 1 figure, v4 Minor changes, references correcte
ADZE: a rarefaction approach for counting alleles private to combinations of populations
Motivation: Analysis of the distribution of alleles across populations is a useful tool for examining population diversity and relationships. However, sample sizes often differ across populations, sometimes making it difficult to assess allelic distributions across groups
Unravelling the Mysteries of the Leo Ring: An Absorption Line Study of an Unusual Gas Cloud
Since the 1980's discovery of the large (2x10^9 Msun) intergalactic cloud
known as the Leo Ring, this object has been the center of a lively debate about
its origin. Determining the origin of this object is still important as we
develop a deeper understanding of the accretion and feedback processes that
shape galaxy evolution. We present HST/COS observations of three sightlines
near the Ring, two of which penetrate the high column density neutral hydrogen
gas visible in 21 cm observations of the object. These observations provide the
first direct measurement of the metallicity of the gas in the Ring, an
important clue to its origins. Our best estimate of the metallicity of the ring
is ~10% Zsun, higher than expected for primordial gas but lower than expected
from an interaction. We discuss possible modifications to the interaction and
primordial gas scenarios that would be consistent with this metallicity
measurement.Comment: 11 pages, 7 figures, accepted Ap
A comparison of spectral element and finite difference methods using statically refined nonconforming grids for the MHD island coalescence instability problem
A recently developed spectral-element adaptive refinement incompressible
magnetohydrodynamic (MHD) code [Rosenberg, Fournier, Fischer, Pouquet, J. Comp.
Phys. 215, 59-80 (2006)] is applied to simulate the problem of MHD island
coalescence instability (MICI) in two dimensions. MICI is a fundamental MHD
process that can produce sharp current layers and subsequent reconnection and
heating in a high-Lundquist number plasma such as the solar corona [Ng and
Bhattacharjee, Phys. Plasmas, 5, 4028 (1998)]. Due to the formation of thin
current layers, it is highly desirable to use adaptively or statically refined
grids to resolve them, and to maintain accuracy at the same time. The output of
the spectral-element static adaptive refinement simulations are compared with
simulations using a finite difference method on the same refinement grids, and
both methods are compared to pseudo-spectral simulations with uniform grids as
baselines. It is shown that with the statically refined grids roughly scaling
linearly with effective resolution, spectral element runs can maintain accuracy
significantly higher than that of the finite difference runs, in some cases
achieving close to full spectral accuracy.Comment: 19 pages, 17 figures, submitted to Astrophys. J. Supp
Molecular gas heating in Arp 299
Understanding the heating and cooling mechanisms in nearby (Ultra) luminous
infrared galaxies can give us insight into the driving mechanisms in their more
distant counterparts. Molecular emission lines play a crucial role in cooling
excited gas, and recently, with Herschel Space Observatory we have been able to
observe the rich molecular spectrum. CO is the most abundant and one of the
brightest molecules in the Herschel wavelength range. CO transitions are
observed with Herschel, and together, these lines trace the excitation of CO.
We study Arp 299, a colliding galaxy group, with one component harboring an AGN
and two more undergoing intense star formation. For Arp 299 A, we present PACS
spectrometer observations of high-J CO lines up to J=20-19 and JCMT
observations of CO and HCN to discern between UV heating and alternative
heating mechanisms. There is an immediately noticeable difference in the
spectra of Arp 299 A and Arp 299 B+C, with source A having brighter high-J CO
transitions. This is reflected in their respective spectral energy line
distributions. We find that photon-dominated regions (PDRs) are unlikely to
heat all the gas since a very extreme PDR is necessary to fit the high-J CO
lines. In addition, this extreme PDR does not fit the HCN observations, and the
dust spectral energy distribution shows that there is not enough hot dust to
match the amount expected from such an extreme PDR. Therefore, we determine
that the high-J CO and HCN transitions are heated by an additional mechanism,
namely cosmic ray heating, mechanical heating, or X-ray heating. We find that
mechanical heating, in combination with UV heating, is the only mechanism that
fits all molecular transitions. We also constrain the molecular gas mass of Arp
299 A to 3e9 Msun and find that we need 4% of the total heating to be
mechanical heating, with the rest UV heating
- …