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We report results on rotating stratified turbulence in the absence of forcing and with
large-scale isotropic initial conditions using direct numerical simulations computed
on grids of up to 40963 points. The Reynolds and Froude numbers are, respectively,
equal to Re = 5.4 × 104 and Fr = 0.0242. The ratio of the Brunt-Väisälä to the
inertial wave frequency, N/ f , is taken to be equal to 4.95, a choice appropriate to
model the dynamics of the southern abyssal ocean at mid latitudes. This gives a global
buoyancy Reynolds number RB = ReFr2 ≈ 32, a value sufficient for some isotropy
to be recovered in the small scales beyond the Ozmidov scale, but still moderate
enough that the intermediate scales where waves are prevalent are well resolved. We
concentrate on the large-scale dynamics, for which we find a spectrum compatible
with the Bolgiano-Obukhov scaling. This scaling is also found for geostrophically
balanced initial conditions on a run at a lower resolution and hence lower RB ≈ 4.
Furthermore, we confirm that the Froude number based on a typical vertical length
scale is of order unity, with strong gradients in the vertical. Two characteristic scales
emerge from this computation and are identified from sharp variations in the spectral
distribution of either total energy or helicity. A spectral break is also observed at
a scale at which the partition of energy between the kinetic and potential modes
changes abruptly, and beyond which a Kolmogorov-like spectrum recovers. Large
slanted layers are ubiquitous in the flow, in the velocity and temperature fields, with
local overturning events indicated by small local Richardson numbers and strong
localized vortex tangles . Finally, a small large-scale enhancement of energy directly
attributable to the effect of rotation is also observed. C 2015 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4921076]

I. INTRODUCTION

Rotating stratified flows are particularly important in the understanding of the dynamics of
our planet and the Sun. Several of the key concepts needed in order to progress in predictions of
the weather and of the global evolution of the climate depend crucially on a fundamental under-
standing of these flows. At different scales, different physical regimes become salient, and yet all
scales interact. The nonlinear advection produces steepening, albeit slowly in the presence of strong
waves. Thus, these fronts and turbulent eddies lead to enhanced dissipation and dispersion of parti-
cles and tracers, affecting the global energetic behavior of the atmosphere and climate systems, for
example, for atmospheric synoptic scales and for oceanic currents, in the latter case modifying the
meridional circulation. In the atmosphere, such effects on energetics can in turn impair assessments
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of whether a given super-cell can spawn a tornado, and they affect both the evaluation of hurri-
cane intensity and of climate variability. Rotating stratified turbulence (RST hereafter) thus plays a
crucial role in the dynamics of the atmosphere and oceans, with nonlinear interactions—responsible
for the complexity of turbulent flows—having to compete with the waves due to rotation and
stratification.

A high-resolution direct numerical simulation (DNS) of homogeneous isotropic turbulence
(HIT) on a grid of 40963 points, with Taylor Reynolds numbers of up to 1200 was performed a
decade ago1,2 (for the case of passive tracers and Lagrangian particles, see Refs. 3 and 4). For
purely stratified flows, runs with comparable resolutions were presented recently in Ref. 5. In these
simulations, energy cascades are found both in the vertical and the horizontal directions, with 1/3
of the dissipation coming from the former as in three-dimensional (3D) homogeneous isotropic
turbulence and with a Kolmogorov spectrum in terms of the horizontal wavenumber at scales both
larger and smaller than the Ozmidov scale. Part of the difficulty in determining spectral distri-
bution among scales resides in the well-known fact6 that the dynamics is anisotropic,7 and thus,
the isotropic spectrum should be replaced by an axisymmetric two-dimensional spectrum or by
anisotropic correlation functions.

While these results were obtained for purely stratified flows, the effect rotation can have on
stratified turbulence has been investigated by a number of authors in the Boussinesq framework.8–14

The role played by the ratio N/ f in these flows is relevant although, in some ways, poorly under-
stood. In Ref. 8, it was shown that while stratification in the absence of rotation determines the
vertical length scale L ∥ (basically, the buoyancy scale LB associated with the thickness of verti-
cal layers, with a Froude number based on this vertical length scale of order unity) and does so
independently of the horizontal scale L⊥, in RST, this scale has a more complex dependence on
the buoyancy scale and on N/ f , in which the Rossby number is the chief discriminating factor.
However, specifically in the quasi-geostrophic limit, it is found12 that L ∥ ∝ f L⊥/N , with the propor-
tionality, indeed, consisting of a function of Rossby number, as suggested in Ref. 8. We shall use
this finding to help explain spectral features in our DNS.

In Ref. 9, elongated boxes were considered to study the emergence of a direct energy cascade
in RST with a Kolmogorov spectrum in the horizontal direction, and it was shown that such is
the case provided the Rossby number is greater than a critical value of ≈0.1. The case of large
N/ f (&45) was also considered, and the runs were performed using hyper-viscosity. The aspect
ratio of the computational domain seems to play an important role in these studies and to influence
the dynamics especially at unit Burger number Bu = N L⊥/ f L ∥. The linear regime of potential
vorticity at Bu = 1 was analyzed in Ref. 15 (see also Ref. 16), and it was found that vortical modes
dominate over waves at large scales, and that the parameter Γ = f k ∥/(N k⊥) is relevant as a measure
of the relative importance of terms in the linear part of the expression for potential vorticity: the
two sources of dispersion become comparable when f k ∥ ∼ N k⊥. A more recent work on RST17

deals with the emergence of helicity (vorticity-velocity correlations) in such flows, helicity be-
ing measured to be relatively strong in tornadoes and hurricanes,18 and also being an important
ingredient in the origin of large-scale magnetic fields in astrophysics.

As already mentioned, N/ f is rather large in many applications. However, the case of RST
with N/ f of order unity (or slightly larger) is also of interest for geophysical flows. One example
is the abyssal southern ocean at mid latitude,19 which serves as a motivation for the present study
and for which N/ f is estimated to be between roughly 5 and 10. Flows with N/ f ranging from 0.1
to 10 were analyzed in Refs. 10 and 11; all runs were spin-down with initial conditions at k0 ≈ 10.
These authors stressed the importance of computing for long times compared to both the inertial
and stratified periods of the waves, because of what are called slow modes, i.e., modes with zero
wave frequency, as already emphasized in Ref. 14 (see also Ref. 20). In Ref. 14, it was also noted
that energy builds up with time at small scales, the flow being strongly intermittent. Previous studies
in the regime of moderate N/ f also showed that the inverse cascade of energy to large scales is
more efficient in the range 1/2 ≤ N/ f ≤ 2,21 when wave resonances disappear.14 Moreover, when
forcing RST at intermediate to small scales, it can be shown that there is a clear tendency towards
a −5/3 spectrum for the inverse cascade, as the Reynolds number increases for fixed parameters,
together with the existence of a dual bi-directional energy cascade: to small scales with a positive
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and constant energy flux and to large scales with again a constant but negative energy flux,22,23 in
accordance with oceanic data.24

Noticing the scarcity of high-resolution DNS for turbulence in the presence of both rotation
and stratification to date and considering the geophysical relevance of flows with moderate values of
N/ f , we thus now analyze results from two runs with a numerical resolution using up to 40963 grid
points at the peak of dissipation for the first one, and 5123 points for an initially balanced run used
to study the effect of varying the initial conditions. In Sec. II are given the equations, the numerical
procedure, and the overall parameters. Sections III and IV provide, respectively, the temporal and
spectral dynamics of the flow, Sec. V describes the physical structures that develop, and finally,
Sec. VI offers a brief discussion and our conclusions.

II. NUMERICAL SETUP

A. Equations

The Boussinesq equations in the presence of solid body rotation for a fluid with velocity u and
vertical velocity component w are

∂u
∂t
+ ω × u + 2Ω × u = −Nϑêz − ∇P + ν∇2u, (1)

∂ϑ

∂t
+ u · ∇ϑ = Nw + κ∇2ϑ, (2)

together with ∇ · u = 0 assuming incompressibility. P is the total pressure, N is the Brunt-Väisälä
frequency, f = 2Ω with Ω the rotation frequency, and ν and κ are the kinematic viscosity and scalar
diffusivity (taken to be equal, for a Prandtl number equal to unity, Pr = 1). Finally, êz is the unit
vector in the vertical direction, which is in the direction of the imposed rotation and opposed to the
imposed gravity, g; therefore, Ω = Ωẑ. Note that the normalized temperature fluctuation ϑ, that ap-
pears in the equations for momentum and mass conservation, derives from the standard Boussinesq
formulation (see, e.g., Ref. 25) in terms of the density fluctuations about a stable background state,

ρ = −dρ
dz

z + ρ′, (3)

by way of a change of variables,

ρ′ =
N ρ0

g
ϑ. (4)

Here, N2 = −(g/ρ0)(dρ/dz) is a measure of the (constant) background stratification, ρ0 is the
mean density, ρ is the total density, and ρ′ stands for the fluctuation around the background state.
The “temperature” thus has units of velocity, and kinetic and potential energies are immediately
comparable.

Equations (1) and (2) are then written in dimensionless units. A unit length scale and a unit
r.m.s. velocity are used to dimensionalize all quantities. With this choice, for a characteristic ve-
locity U0 = 1 and a characteristic length L0 = 1, the turnover time is T0 = L0/U0 = 1, which we
use as unit of time. Ω and N are then measured in units of the inverse of time T0. The periodic
domain has length λ0 = 2π, resulting in integer wavenumbers and in a minimum wave number
kmin = 2π/λ0 = 1.

The initial conditions for the velocity are centered on the large scales; all individual Fourier
modes with 2 ≤ |k|0 ≤ 3 are given an equal non-zero amplitude, with a total energy such that at
t = 0, urms = 1. There is as much energy as in the three directions (isotropy is assumed), and the
phases are chosen at random. In the first of the two runs considered (“run A”), we take ϑ(t = 0) = 0,
so the potential energy is initially zero (EP =

1
2



ϑ2� = 0). These initial values are standard in turbu-

lence computations that focus on the nonlinear transfer of energy across scales. However, in order
to check whether the specific initial conditions described above are responsible for the development
of the features observed in this paper and in particular for Bolgiano-Obukhov (BO) scaling, we have
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also performed an entirely different run (“run B”) on a grid of 5123 points in which “balanced”
initial conditions are used. This run is described in Sec. IV B.

In the absence of dissipation (ν = η = 0), the total energy ET = EV + EP is conserved, with
EV =

1
2


|u|2� the kinetic energy. Besides the energy, rotating stratified flows also conserve the
point-wise potential vorticity which can be defined as

PV = f ∂zϑ − Nωz + ω · ∇ϑ,

with ω = ∇ × u the vorticity. Because of the nonlinear term ω · ∇ϑ in the expression of PV , its L2

norm is quartic and thus it is not conserved by each triadic interaction in a truncated ensemble of
modes. The extent to which this is relevant to the dynamical evolution of the flow is not entirely
known, but several studies for shallow water26 or the Boussinesq equations27–29 assess the relative
importance of the different contributions to PV , with the general assumption that the high-order
terms can be neglected when the waves are strong enough, i.e., at small Froude and/or Rossby
numbers. By contrast, for the particular case of stable stratification, it was hypothesized in Ref. 29
that when the buoyancy Reynolds number RB is large enough, the nonlinear term in PV affects the
dynamics, becoming important at the same time as Kelvin-Helmholtz instabilities develop in the
flow.

When linearizing primitive equations (1) and (2) in the absence of dissipation, one obtains
inertia-gravity waves of frequency

ωk = k−1


N2k2
⊥ + f 2k2

∥, (5)

with k =


k2
⊥ + k2

∥, k⊥ =


k2
x + k2

y, and k ∥ = kz, respectively, the total, horizontal (or perpendic-
ular), and vertical (or parallel) wavenumbers (see, e.g., Refs. 27 and 30).

Fourier spectra will be built-up from their axisymmetric counterparts defined from the two-
point one-time velocity covariance U(k) (see, e.g., Ref. 31)

eV(|k⊥|, k ∥) =


k⊥≤|k×ẑ|<k⊥+1
k∥≤kz<k∥+1

U(k) =


U(k)|k| sin θdφ = e(|k|, θ) = e(k, θ), (6)

here φ is the longitude with respect to the kx axis and θ is the co-latitude in Fourier space
with respect to the vertical axis. The function eV(k⊥, k ∥ = 0) may be regarded as the spectrum
of two-dimensional (2D) modes, having no vertical variation. Note that for an isotropic flow, at
a given point k in wavenumber space, the ratio of the axisymmetric spectrum eV(|k⊥|, k ∥) to the
isotropic spectrum is ∼1/|k| because the size of the volume element in the isotropic case contains an
additional (integrating) factor of |k| compared to the axisymmetric case. Hence, if the axisymmetric
spectrum behaves as k−α⊥ , then the corresponding isotropic scaling will be k−α+1. The spectrum
eV(|k⊥|, k ∥) can also be decomposed into the kinetic energy spectrum of the horizontal components
(velocity components u and v) and of the vertical kinetic energy (velocity component w),

eV(|k⊥|, k ∥) = e⊥(|k⊥|, k ∥) + e∥(|k⊥|, k ∥). (7)

In the following, we will also consider the reduced perpendicular spectrum,32

EV(k⊥) = Σk∥eV(k⊥, k ∥), (8)

the reduced parallel spectrum EV(k ∥) (which has a sum over k⊥), and the spectrum representing the
perpendicular energy of the strictly 3D modes,

E3D(k⊥) = EV(k⊥) − eV ,⊥(k⊥, k ∥ = 0). (9)

Similar definitions hold for the helicity and potential energy spectra, hV(k⊥, k ∥) and eP(k⊥, k ∥),
their reduced forms, HV(k⊥) and EP(k⊥), as well as their 3D expressions (i.e., the perpendicular
spectra of the 3D modes), HV ,3D(k⊥) and EP,3D(k⊥). These spectra will be analyzed in Sec. IV.
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B. Specific numerical procedure

The code used in this paper is the Geophysical High Order Suite for Turbulence (GHOST),
which is fully parallelized using a hybrid methodology.33 It uses parallel multidimensional FFTs
in a pseudo-spectral method for 2D and 3D domains on a regular structured grid and can solve a
variety of neutral-fluid partial differential equations, as well as several that include a magnetic field.
Boundary conditions are periodic, and the time-integration is performed using a Runge-Kutta algo-
rithm up to 4th-order with double precision arithmetic. The code uses a “slab” (1D) domain decom-
position among Message Passing Interface (MPI) tasks, and OpenMP threads provide a second level
of parallelization within each slab or MPI task. The code demonstrates good parallelization to more
than 100 000 compute cores.

In order to achieve a high resolution at peak of dissipation when gradients of variables are the
strongest, we have implemented a “bootstrapping” procedure in which we start the simulation at a
lower resolution until the dynamic range of the energy spectrum decreases to some fiducial value.
Here, by dynamic range, we refer to the ratio of the energy at the peak of the spectrum, to the energy
at the largest available wavenumber at a given resolution. When the lower threshold (≈10−10) is
reached, we increase the resolution and continue running until the dynamic range of the DNS at the
new resolution decreases again to the fiducial value, repeating the process. Bootstrapping requires
that a field at a reduced resolution be “padded” spectrally with zeros from its largest allowed
wavenumber to the larger wavenumber allowed at the next (higher) resolution. This is handled in a
processing step before the next highest resolution DNS is computed. This bootstrapping procedure
was recently implemented, tested, and used in the context of ideal magnetohydrodynamics.34

We thus began with a 15363 run up to t = 2 (note that all times henceforth are given in units
of evolutionary time, unless stated otherwise), then doubled the resolution on a grid of 30723 grid
points up to t = 5, and then completed the run on the grid with 40963 points. The maximum resolved
wavenumber using a classical 2/3 de-aliasing rule is kmax = N/3 = 1365, with the length of the
box corresponding to wavenumber kmin = 1. The viscosity and scalar diffusivity were chosen to be
the same for these three successive runs, each run representing the evolution of the same physical
problem at earlier times. The time step for each was chosen on the basis of the highest resolution
considered in order to minimize time stepping errors at lower resolution. The first bootstrapping
was done at the end of the inviscid phase before the small scale structures that can dissipate energy
develop substantially.

The run on the intermediate grid of 30723 points was also pursued to later times (tmax = 6.7);
this enabled us to inspect the convergence of the overall statistics at the same evolutionary times.

C. Dimensionless parameters

The dimensionless numbers associated with the Boussinesq equations are defined as

Re =
U0L0

ν
, Fr =

U0

L0N
, Ro =

U0

L0 f
, Pr =

ν

κ
, (10)

where U0 and L0 are, respectively, a characteristic velocity and length scale. A number of studies
have shown, at least in the absence of rotation, that the buoyancy Reynolds number, RB, needs to
be large enough for vigorous turbulence to develop in the small scales (see, for example, the review
in Ref. 35 and references therein). In fact, in the rotating and stratified case, the combined effect of
turbulent eddies and waves can be encompassed in the buoyancy and inertial Reynolds numbers, RB

and RΩ, respectively, defined via

RB = ReFr2, RΩ = ReRo2. (11)

Indeed, at RB = 1, the Ozmidov scale

ℓOZ = 2π/kOZ = 2π

εV/N3, (12)

at which isotropy recovers in a purely stratified flow, is comparable to the dissipation (or Kol-
mogorov) scale, ℓη = 2π/kη = 2π(ν3/εV)1/4, where εV = |dEV/dt | is the rate of dissipation of ki-
netic energy. For RB ≫ 1, a Kolmogorov range, typical of isotropic and homogeneous turbulence,
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develops before dissipation can become effective. Similarly, in a purely rotating flow, one can simi-
larly define the Zeman scale ℓΩ = 2π/kΩ = 2π


εV/ f 3. For RΩ ≫ 1, isotropy recovers beyond this

scale as shown in Ref. 31. Resolving such characteristic scales in a DNS may effect the resulting
dynamics and energy distributions. This has been examined in Refs. 36–38 at lower resolutions
(with linear resolution in at least one direction up to 2048 points) with regard to both the Ozmidov
scale (Eq. (12)) and the so-0called buoyancy scale,

LB = 2πU0/N, (13)

which gives the characteristic thickness of the vertical layers in a stratified system. A similar char-
acteristic length scale can be defined based on the rotation rate, f. We consider these scales in
Sec. IV; in Sec. IV C, we provide a modification of LB due to rotation that is suggested by our
results.

Note these length scales are written for a domain with dimensionless length of 2π, such that
k = 2π/ℓ is the wavenumber; a wavenumber k = 1 for a given characteristic lengthscale thus corre-
sponds to the largest scale in the domain ℓ = 2π. In other words, all length scales are measured in
terms of the overall dimension of the flow (and no such 2π factor appears in the equivalent definition
in terms of wavenumber).

As mentioned in the Introduction, a variety of other dimensionless combinations of rele-
vant physical parameters can be defined for rotating stratified turbulence, beyond those written
in Eq. (10). In fact, one of the central limitations to a better understanding of such flows is the
need to unravel what the key parameters are that govern the dynamics. As an example, beyond the
Reynolds, Froude, Rossby, and Prandtl numbers, one can also consider the ratio N/ f or the Froude
number based on a characteristic vertical length scale,

Fz = U0/(ℓZN).
The partition of energy between kinetic and potential modes can be measured by their ratio,

EV/EP, which is one possible definition of the Richardson number. Another definition is simply to
measure the relative strength of the buoyancy to the inertial forces or

Ri = 1/Fr2.

However, in order to emphasize the role of the development of small scales in mixing, we consider
the standard gradient Richardson number in terms of the primitive variables used in Eq. (1),

Rig = −
g

ρ0
∂zρ/(∂zu⊥)2 = N(N − ∂zϑ)/(∂zu⊥)2, (14)

where we have used expansion Eq. (3) and definition Eq. (4). This form suggests that a sufficiently
large vertical gradient locally leads to negative values of Rig , which is consistent with the intuitive
picture of overturning when a denser parcel of fluid lies atop a less dense parcel.

D. Parameters and general characterization for 40963 run

We use N/ f = 4.95 with N = 13.2 and Ω = f /2 = 1.33 (thus, f = 2.67). The viscosity is
chosen to have the simulation well resolved: ν = 4 × 10−5; the time step is dt = 1.5 × 10−4. In
dimensionless units, the resulting overall energetics of the flow lead to several scales that are of
interest and to a characterization of the flow in terms of the dimensionless parameters. Considered
at the peak of enstrophy, the characteristic velocity is U0 ≈ 0.83 and the integral length scale,
computed from Lint = 2π


EV(k)dk/


kEV(k)dk ≈ 2.6, very close as expected to the scale at

which the energy spectrum initially peaks, namely, L0 = 2π/k0 ≈ 2.5. This gives an eddy turn-over
time of τNL = Lint/U0 ≈ 3.1. The dissipation rate of the kinetic energy is taken from an evaluation
of the kinetic enstrophy averaged over the interval t ∈ [5.3,5.7] about the peak of dissipation:
εV = ν


|ω|2� ≈ 0.0123 (see Fig. 1(a)). Note that in the isotropic case, εV = ϵK = U3
0/Lint ≈ 0.22,

but this relation does not hold in the highly anisotropic system we are investigating. Rather, we can
take an estimate coming from weak turbulence, namely, ϵK ∗ Fr ≈ 0.005, within a factor of two of
the measured rate of energy dissipation. The Kolmogorov dissipation wavenumber is computed at
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FIG. 1. (a) Temporal variation of kinetic (solid line) and potential (dashed line) energies and of the total energy dissipation
rate for run A with a dotted (red) line for the run using the 30723 grid which evolved until t = 6.7. The squares (green)
represent the run performed on the grid of 40963 points, evolved for 5 ≤ t ≤ 5.88 (i.e., for a duration of ≈77 gravity wave
periods), and the triangles (black) indicate the early time run on a grid of 15363 points. All three runs have the same physical
parameters and time step. (b) Temporal variation of the ratio of kinetic to potential energy. In the inset is the total energy
dissipation in lin-log coordinates.

the peak of dissipation to be kη ≈ 660. The Zeman and Ozmidov wavenumbers are therefore found
to be, respectively, kΩ ≈ 39 and kOZ ≈ 431. The buoyancy wavenumber is kB = 2π/LB ≈ 16; the
lack of scale separation between kΩ and kB suggests that it will be difficult to distinguish as separate
effects those due to rotation and those due to stratification. The Reynolds number is thus found to
be Re ≈ 5.4 × 104, the Froude number is Fr ≈ 0.0242, and the Rossby number is Ro ≈ 0.12. Conse-
quently, the buoyancy and rotational Reynolds numbers are RB ≈ 32, and Rω ≈ 775. The Richard-
son number is determined to be Ri ≈ 1700, so the flow is, indeed, found to be strongly stratified.

Finally, we can define a Taylor Reynolds number as Rλ = U0λ/ν, with λ = 2π[ EV(k)dk
/


k2EV(k)dk]1/2 the Taylor scale. In classical HIT, Rλ measures the degree of development of
small scales. At peak of dissipation, λ ≈ 0.31, leading to a rather large Rλ ≈ 6400, quite high
compared to similar computations in HIT (e.g., Rλ ≈ 1200 in a HIT run at similar grid resolu-
tion1,2). This is linked to the fact that, in the presence of strong waves, the transport of energy to
small scales is hindered and not as efficient, and the energy spectrum becomes steeper at least at
large scales, resulting in a larger Taylor scale for the same viscosity. It is worth noticing that in the
atmosphere, the Taylor Reynolds number is estimated to be Rλ ≈ 20 000, and it may be the case that
realistic simulations of stratified and rotating atmospheric turbulence may be feasible in the near
future as a result of this effect. Finally, note also that the value of Rλ puts the present computation
above the different thresholds in Rλ identified in Ref. 39 for various instabilities to develop, as,
e.g., for the growth of vertical shear and the growth of vertical energy.

When the dimensionless numbers obtained in the simulation at the peak of dissipation given
above are now dimensionalized using the characteristic length and velocity of the Southern Abyssal
Ocean at mid latitudes, i.e., with Lo = 1000 m (corresponding to the peak of energy input in the
ocean from bathymetry40) and Uo = 0.024 m s−1, as measured, for example, in the Drake passage,19

we obtain kinematic viscosity and scalar diffusivity, respectively, of νo = κo = 4.5 × 10−4 m2 s−1,
too large by roughly two orders of magnitude. The corresponding overall effective energy dissi-
pation rate, obtained from the dimensionless value measured directly in the simulation, would be
ϵ ≈ 1 × 10−9 m2/s3. This value can be compared with measurements in the southern ocean.41 As
a further comparison, note also that this value for the dissipation rate is significantly smaller than
atmospheric measurements, which indicate ϵ ≈ 10−6 m2 s−3 at intermediate altitude and at scales
between 3 and 600 km.42

With a rotation frequency of Ω = 10−4 s−1, our choice of parameters leads to a Brunt-Väisälä
frequency of N ≈ 10−3 s−1 and Fr ≈ 0.024, corresponding to the parameters of the run described
above. The buoyancy scale is 150 m, the Ozmidov scale is 4 m, and the Kolmogorov dissipation
scale is around 0.15 m. This last value is too large, because the viscosity is too large and the
numerical resolution is still insufficient. Slightly different values can be taken of course, such as
N ≈ 7 × 10−4 and f ≈ 1.5 × 10−4 (thus, N/ f ≈ 4.67) as done in Ref. 19. Note also that another
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element lacking in our simulation is the interaction with a larger-scale (mean) flow, say at the scale
of several hundred kilometers, together with proper boundary conditions in the vertical.

III. OVERALL TEMPORAL DYNAMICS FOR RUN A

We now examine in more detail the overall temporal evolution of large-scale features in the
simulation with the largest resolution. Figure 1(a) displays the kinetic and potential energy as a
function of time (solid and dashed lines, respectively), as well as the dissipation of the kinetic
energy, ν



ω2�, whereas in Fig. 1(b) is given the ratio of kinetic to potential energy, and in the inset

the total energy dissipation in lin-log coordinates. The three distinct intervals with bootstrapping are
identified in the dissipation in (a) with different symbols: the thick line starting at t = 0 is done on a
grid of 15363 points, the thin dotted line going to tmax ≈ 6.7 is performed on a grid of 30723 points,
and the short thick line around t = 5 is the run on the largest grid of 40963 points.

Easily identifiable initial oscillations due to the waves prevail at early times; these oscillations,
stronger and thus more visible at large scale in the evolution of the energy, are due to inertia-gravity
waves and their irregularity is linked with nonlinear coupling which, at that Reynolds number, is
sizable. However, the ratio of kinetic to potential energy remains relatively constant on average
throughout the run after the initial phase, at a value close to 3. This initial phase is essential,
since, even though our initial conditions have EP = 0 (and random phases for the velocity at large
scale), the gravity waves provide a source of organized potential energy for the next temporal phase
when nonlinearities arise and constant-flux self-similar spectral scaling develops (see Sec. IV).
The kinetic energy starts to decay rather slowly as small scales have been formed. By the end of
the run, the dissipation has reached a plateau and the flow is fully developed. When examining the
temporal evolution of the energy and dissipation for the flows computed on 30723 and 40963 points,
no differences are visible, indicative of a converged simulation and of a well-resolved flow. At the
peak, εV ≈ 0.0123, and the dissipation of potential energy is εP = κ


|∇ϑ|2� ≈ 0.0077 (not shown).
The start of the growth of the dissipation at t ≈ 2 coincides with the development of nonlinear eddy
interactions and with a lesser amplitude in the oscillations which marks exchanges between the
kinetic and potential energies; this time is slightly shorter than the eddy turn-over time built on the
saturated values of the integral length scale Lint ≈ 2.5 (see Fig. 2) and the r.m.s. velocity, U0 ≈ 0.83
(see Sec. II D).

In Fig. 2 are given the temporal evolution of the ratio of the L2 norms (volume averages) of the
vertical to horizontal kinetic energy, as well as a characteristic vertical length scale defined as

ℓz = [
u2
⊥
�
/

(∂zu⊥)2�]1/2. (15)

Note that ℓz can be viewed as a vertical Taylor scale, since it is based on vertical gradients of
the (horizontal) velocity. As expected, the horizontal kinetic energy dominates over the vertical

FIG. 2. Temporal evolution for run A on a 40963 grid of (a) the ratio of the volume averaged vertical to horizontal kinetic
energy,



w2�/



u2+ v2�, and (b) the vertical length scale ℓz defined in Eq. (15), which is characteristic of vertical shear layers.

The integral scale Lint is also provided (dotted line) in order to compare with ℓz.
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FIG. 3. ((a) and (b)) High-resolution isotropic spectra for run A done on a grid of 40963 points for the (a) kinetic energy
compensated by an 11/5 power law and (b) potential energy compensated by a 7/5 power law, averaged over the time interval
t ∈ [5.3,5.7] corresponding to the peak in enstrophy (solid lines). In dashed lines are spectra at earlier times, as indicated
by the labels. (c) Ratio of kinetic to potential energy spectra averaged over the same time interval; note the clear transition
around k ≈ 12 and a scaling close to k−4/5. (d) Total energy flux and, separately, kinetic and potential fluxes, as well as the
buoyancy flux term obtained from Eq. (18). All fluxes are averaged over the same time interval. Note the negative total flux
at large scale (stronger in fact for the kinetic energy flux), indicative of the effect of rotation.

at all times, by a factor close to 4, and increasingly so after the peak of enstrophy. The vertical
length-scale, of order unity to start with, undergoes a steady decrease and stabilizes as the peak of
enstrophy is approached; it is one order of magnitude smaller at peak of dissipation when compared
with its initial value. Considering now the vertical Froude number based on this vertical shearing
length, Fz = U0/(Nℓz), we find Fz ≈ 0.9 . 1 at the latest time of the run. This value for Fz is
predicted for strongly stratified flows from the self-similarity analysis in Ref. 8, if ℓz is taken to be
the vertical scale of the dynamics, since, in this case, it is shown that ℓz ∼ U0/N . One can contrast
the anisotropy arising from rotation and stratification and say that the flow is fully turbulent but in
an anisotropic manner,7 although it still does feel the effect of rotation, as can be seen in Fig. 3(d),
with a negative energy flux at large scale, more strongly so in the kinetic energy component.

IV. SPECTRAL BEHAVIOR

A. Evidence for a large-scale Bolgiano-Obukhov scaling in run A on a 40963 grid

In Fig. 3, we show for run A and with solid lines several isotropic spectra, which are all aver-
aged around the peak of dissipation in the interval t ∈ [5.3, 5.7] (see Fig. 1(a)). The isotropic kinetic
(Fig. 3(a)) and potential (Fig. 3(b)) energy spectra are compensated by a k−11/5 power law, and a
reference line is provided for a Kolmogorov-like k−5/3 law. The Kolmogorov-like law is compatible
with the scaling of the spectrum observed at smaller scales, for kc ≤ k ≤ 100 with kc ≈ 12; note
that this value is close to the buoyancy wavenumber kB ≈ 16 but may nevertheless differ from it (see
below). Early time spectra are also given, in dashed lines and with the time labeling the curves. This
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allows to see the temporal evolution of spectrum from initial conditions centered on k0 ∈ [2, 3]. We
observe that by t ≈ 2.5, the spectra have gained substantial excitation in the small scales and that by
t ≈ 3.5, they are almost completely developed; this time interval (2.5 ≤ t ≤ 3.5) corresponds to the
progressive damping of the substantial oscillations observed in the temporal evolution of the energy
at earlier times (see Fig. 1). Figure 3(b) gives the potential energy spectra for the same times (except
for t = 0 where EP = 0).

At larger scales, steeper spectra are observed (EV(k) ∼ k−11/5, EP(k) ∼ k−7/5), with values of
≈ − 2.2 and ≈ − 1.4, respectively, being computed from least-squares fits on the interval k ∈ [2, 14].
Note that spectra with a power-law index close to −2 were found in Ref. 43 for N/ f varying from 4
to 32, and observations in the ocean also indicate values that are similar and in fact closer to 2.5.24

These spectral indices can be interpreted in the following way. A characteristic feature of
stratified flows is the role that the density or temperature fluctuations can play in the dynamical
evolution as well as in the scale distribution of the energy, with the scalar being either passive (as
it would be in the purely rotating case) or active. In this context, one can invoke a dimensional
argument to explain the large-scale spectral distribution, namely, the BO scaling (Refs. 44 and 45)
derived for purely and stably stratified turbulence. This scaling is obtained under the assumption
that the source of energy at large scale is contained in the buoyancy, or in the potential modes, with
nonlinear transfer rate εP = |dEP/dt | assumed constant and with a negligible advection term in the
momentum equation. Since ϑ in the primitive equations written in Eq. (2) has the dimension of a
velocity, we have to re–introduce the physical dimension of the buoyancy flux in terms of length and
time, i.e., [ϵP] = [L2T−5]; similarly, one can use εPN2 for the constant flux. This then leads to (see
Ref. 46 for a review)

EV(k) = BVε
2/5
P k−11/5, EP(k) = BPε

4/5
P k−7/5, (16)

with Kolmogorov-like constants BV and BP.
In the BO phenomenology, the scalar actively modifies the velocity field. Note that the Coriolis

force due to rotation does not contribute to the energy balance but only to an angular redistribution
of energy favoring negative flux to large scales and thus does not perturb the dynamics leading to
the BO scaling. When examining the fluxes in the equation for the kinetic energy within this frame-
work, the advection and the buoyancy terms both scale as r4/5: they balance each other while not be-
ing constant in the inertial range and diminish in amplitude as scales become smaller. On the other
hand, the advection term in the equation for the potential energy is constant, by construction of this
phenomenological argument. Indeed, the Bolgiano-Obukhov phenomenology derives from the idea
that at large scales, the nonlinear advection term in the momentum equation is not strong enough in
the direct cascade to small scales, and the only available source for kinetic energy is therefore that
coming from the scalar fluctuations. Requiring that the kinetic and potential energy spectra depend
only on the dimensional buoyancy flux, εP, and wavenumber, k, leads to the above spectra.

From the fits to the kinetic and potential energy spectra, we have found that the constants are
BV ∼ 7 and BP ∼ 6, which are higher than would be expected based on a Kolmogorov phenome-
nology in three dimensions, but in fact close to two-dimensional values for the inverse cascade (see
Ref. 47 for review); this may be due to the fact that we observe a small inverse transfer of kinetic
energy (see the energy fluxes in Fig. 3(d)).

We can evaluate the wavenumber, KBO, at which the transition from a Bolgiano-Obukhov to
a Kolmogorov spectrum EV(k) = cKε

2/3
V k−5/3 takes place, in the framework of the BO scaling, by

equating the two kinetic energy spectra at that scale. This leads immediately to

KBO(BV/cK)15/8ε3/4
P ε−5/4

V . (17)

For εV , we select the value of the kinetic energy flux to be that represented by the rate at
which kinetic energy is dissipated at the smallest scales. Averaging the dissipation rate (Fig. 1(a))
over the interval t ∈ [5.3, 5.7] about the peak in enstrophy yields |εV | ≈ 0.0123. The value for εP
is taken to be value of the potential energy dissipation rate, εP ≈ 0.0077, averaged over the same
time interval, as mentioned in Sec. III. Finally, we measure cK directly from the time-averaged
spectrum in Fig. 3(a) just after the start of the k−5/3 region at k = 15, to find cK = 5.4. This too is
high for a three dimensional isotropic simulation, but within the range of values cited in Ref. 47
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for two dimensional inverse cascades. Note also that the range we are using is at scales greater than
the Zeman scale (k < kΩ), where rotation is still expected to influence the dynamics. Using these
values for the spectral fluxes and for the Kolmogorov constants, we find KBO ≈ 10, very close to the
observed value of kc ≈ 12.

There is evidence of Bolgiano-Obukhov scaling in two-dimensional laboratory experiments of
convective flows,48 as well as in three dimensions.49 In this latter case, the way the BO scaling was
unraveled was to perform conditional structure functions in order to select the locations of the flow
in which the Bolgiano-Obukhov length LBO = 2π/KBO is sufficiently smaller than the characteristic
size of the experiment L0, by doing a local analysis of the potential energy dissipation rate on which
LBO is based, and the BO scaling was obtained far from the boundaries. Another way in which the
Bolgiano-Obukhov scaling can be found is to consider an aspect ratio for the fluid which is small,
a condition easily fulfilled by the atmosphere and the ocean. In Ref. 50, it is shown using direct
numerical simulations in tall boxes that the occurrence of the BO scaling is linked to the appearance
of an inverse cascade of energy in such fluids due to a quasi-bi-dimensionalization imposed by the
geometry.

In our simulations, rotation induces a quasi-bi-dimensionalization as well as a marked inverse
transfer (note that inverse energy cascades and transfers are commonly observed in RST flows
when forced at an intermediate scale, see, e.g., Refs. 14, 22, and 23). A recent analysis of a
three-dimensional DNS of a non-rotating stratified unbounded turbulent flow also finds BO scaling
for the spectra in the stably stratified (no rotation) regime for lower levels of stratification and at
lower Reynolds number than those presented here.51 There are also indications that the BO scaling
has been observed in stably stratified flows in the atmosphere,52 and specifically in the surface
layer53 and in the troposphere.54 These latter works stress the role of anisotropic structures develop-
ing because of the imposed forces (rotation and gravity) and the ensuing breaking of the isotropic
Kolmogorov law.

We now show in Fig. 3(c) the ratio of the kinetic and potential energy spectra which were
averaged over the time interval corresponding to the peak of enstrophy, the BO prediction being
indicated as a dashed line with a −4/5 slope. This scaling seems to hold at large scales, up to k ≈ 12
for the velocity, and on a shorter range for the temperature field (see Fig. 3(b)) Finally, Fig. 3(d)
displays several fluxes. The (forward) flux of total energy (solid line) is approximately constant, at
a level of ≈0.022 in these two identified ranges, indicative of a classical turbulent cascade. Note
also that it becomes negative (reaching ≈ −0.0085) at scales larger than the scale of the initial
conditions; it can be expected, therefore, that, in the presence of forcing, a small inverse cascade
may develop, as observed in Ref. 28 and as it does when the forcing is placed at smaller scale (see,
e.g., Refs. 21, 22, and 55).

We show finally in Fig. 3(d) the energy flux decomposed into its kinetic (dashed) and potential
(dashed-dotted) components, ΠV ,P, as well as the buoyancy flux, Πwϑ, (dotted line), defined in
wavenumber space as

Πwϑ(k) =
k′=k
k′=0


k′< |k′′|<k′+1

ℜ(ŵ(k′′)ϑ̂(k′′)∗), (18)

where ŵ(k) and ϑ̂(k) are the Fourier coefficients for the vertical velocity and the scalar, respec-
tively. The first two fluxes, ΠV ,P, correspond to a scale–by–scale analysis of the two non-linear
flux terms, ϑu · ∇ϑ and u · [u · ∇]u, whereas the buoyancy flux concerns the linear modal energetic
exchanges between the velocity and density fluctuations. The sum of the kinetic dissipation at
its peak (see Fig. 1(a)) plus the kinetic energy flux, Πv(k = 1) ≈ −0.01 is ≈0.0024, which is in
excellent agreement with the nearly constant value of Πv in the region k ∈ [4, 20] is seen in this
figure. Furthermore, it can be seen that, as hypothesized in the BO phenomenology, the potential
flux to small scales is dominant, constant, and positive for a wide range of scales. The kinetic flux
has a strong peak at wavenumbers smaller than k0. It is in fact negative throughout the wavenumber
range around the peak of enstrophy, but close to zero in the Bolgiano-Obukhov range, again as
hypothesized in the BO phenomenology; this is likely due to the fact that the buoyancy flux acts as a
source of energy for the velocity in a wide range of scales.
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We present the time average of Πwϑ in Fig. 3 ((d), dotted curve), where it is seen that it is, in
fact, comparable to the total energy flux and can serve potentially as a kinetic energy source. We
note that large temporal fluctuations in the buoyancy flux are observed; they correspond to gravity
waves directly affecting vertical motions.

The agreement of the spectral scalings with the BO phenomenology, as well as the compati-
bility between the KBO computed with measured data and the observed kc offer compelling evidence
of BO scaling in this decaying strongly stratified, weakly rotating DNS. The problem remains, how-
ever, that there is little scale separation for k < KBO before a different dynamics dominates at larger
wavenumbers. A parametric study at high Reynolds number, achieved by varying the buoyancy
force may help to determine the likelihood of such scaling laws in unbounded stratified turbulence;
conditional averaging49 may be effective for such a study.

Another factor could be taken into consideration, in principle, to elucidate the scaling observed
in our run, namely, that of the effect of large-scale shear. While shear is not imposed in our run,
strong shear layers develop in the vertical in stably stratified flows, even in the presence of rotation
(in which case they are slanted, see Figs. 8–10). Shear is created locally and leads to strong instabil-
ities (see Fig. 10(c) below), so we must consider its effect on spectral behavior. A shear scaling leads
to the following spectra:

EV(k) ∼ ϵ1/3
V Sk−7/3, EP(k) ∼ ϵPϵ

−1/6
V S−1/2k−4/3,

where S is the shear rate (which can also be expressed in terms of a shear length scale).46 In this
case, the scalar is passive, and the ratio of the two spectra varies as k−1, so the spectral indices are
close to those that we find in our results. However, we have argued in part by considering Πwϑ

(Eq. (18)) and its magnitude relative to the total energy flux that the scalar field is not passive.
Furthermore, the excellent agreement of the observed spectral indices (if in a short inertial range)
and the accord between the observed break in the spectra at kc and the computed KBO seem to
suggest that BO scaling is more likely; this may be a first instance of such a scaling in a DNS of
high Reynolds number strongly stably stratified unbounded flows in the presence of rotation (see
Ref. 51, as well as Refs. 57 and 58 for the purely stratified case).

B. Balanced initial conditions

The analysis presented in Sec. IV A raises the question of whether this finding of a Bolgiano-
Obukhov scaling depends on initial conditions. In particular, it is natural to ask whether a large-
scale geostrophic and hydrostatic balance such as that observed in the atmosphere would also lead
to the same result. In this context, we have also performed a run on a grid of 5123 points (run B),
with initial conditions for which there is both geostrophic and hydrostatic balance. Specifically, the
initial vertical velocity is taken equal to zero, w = 0, and the horizontal components of the velocity
are initialized from a stream function, φ, that is three dimensional and isotropic at large scales
with random phases (compare with run A in Sec. II A), such that u = ∂yφ and v = −∂xφ (so that
∇ · u = 0). Neglecting the nonlinear and dissipative terms in Eq. (1) and assuming a steady state,
we impose geostrophic balance at t = 0 to find the two equations for the horizontal velocity and
pressure gradients,

f v = ∂xP; − f u = ∂yP .

Taking the partial derivative with respect to x of the first equation and adding it to the partial
derivative with respect to y of the second gives the equation for the pressure,

∇2
⊥P = fωz,

which is translated into Fourier space as P̂ = −( f /k2
⊥)ω̂z (with the hats denoting the Fourier trans-

form). In the vertical direction, there is no effect of the Coriolis force but gravity now comes in.
Assuming hydrostatic momentum balance in the vertical then yields

ϑ = − 1
N
∂zP,
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FIG. 4. Data for run B on a grid of 5123 points with balanced initial conditions (see Sec. IV B). (a) Temporal evolution of
kinetic and potential energies (solid and dashed lines) and of total dissipation (dotted line, see also Fig. 1). (b) Time evolution
of kinetic energy spectra compensated by k11/5. The solid line is the spectrum averaged over the time interval t ∈ [4.8, 5.2]
corresponding to the peak in enstrophy. (c) Time evolution of potential energy spectra compensated by k7/5. The solid line is
the spectrum averaged over the same time interval. (d) Energy fluxes as in Fig. 3(d) for this new run, averaged over the same
time interval. In the inset is plotted, the ratio of kinetic to potential energy spectra, each averaged again over the same time
interval.

which leads in Fourier space to the initial condition we seek for the scalar fluctuations, namely,
ϑ̂ = −i(kz/N)P̂.

Even though the initial conditions are different, the parameters of run B are kept similar to
those of run A, except for the smaller Reynolds number because of the reduced resolution. They are
specifically N = 13.2,N/ f = 4.95, ν = κ = 3.2 × 10−4. The temporal dynamics of this run leads at
the peak of dissipation to Re ≈ 6600, Fr ≈ 0.026, Urms ≈ 0.85, Lint ≈ 2.5, ℓz ≈ 0.15, and RB ≈ 4.4;
the resulting vertical Froude number is again only slightly smaller than one (≈0.4).

In Fig. 4(a), we show the temporal evolution of the kinetic and potential energies and of the
total dissipation; they evolve in a manner very similar to run A, but with oscillations of smaller
amplitude, and with a slight progressive growth of potential energy. We note that, even though
there is no potential energy initially in run A, the presence of strong gravity waves builds it fast,
whereas in the initially geostrophically balanced case, that growth is more likely on the slower
nonlinear timescale. The kinetic and potential energy spectra are given, respectively, in Figs. 4(b)
and 4(c) together with their build-up in time due to non-linear interactions (see labels). The solid
lines give the spectra averaged temporally around the peak of enstrophy (t ∈ [4.8, 5.2], an interval
representing the same number of gravity wave periods as in run A). Furthermore, the spectra are
compensated by the respective expected spectral laws for a Bolgiano-Obukhov scaling. It appears
remarkably accurate again in this case. The fit to the spectral index for the kinetic energy is ≈ − 2.3
over the wavenumber range k ∈ [2, 16], close to the reference slope indicating BO scaling, and the
fit for the potential energy in the same range is ≈ − 1.5. At this lower resolution, the small-scale
Kolmogorov-like spectrum is not realized, the energy decaying faster at large wavenumbers. The fits
thus give spectral indices that are slightly further from the BO prediction than for run A; this may be
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due to the fact that the spectra for k > KBO are steeper than for run A and alter the dynamics in the
BO range itself.

Finally, Fig. 4(d) gives the energy fluxes (see Fig. 3(d) for a description). The fluxes are
remarkably different from run A and are a signature of the different roles the inertia-gravity waves
play for both runs; in run A, unbalanced, these waves are prominent whereas in run B they are
almost negligible and the (usual) advection flux is the strongest. We also note that the negative
fluxes are comparable for these two runs, but the flux of total energy to small scales is half what it
was in run A and the turbulence is thus weaker in that case, not so much we conjecture because of
the lesser Reynolds number but rather because the initially balanced flow is effective in weakening
the nonlinear interactions.

We thus conclude from the examination of these figures that the BO scaling also applies in this
case. Finally, we note that, while there is a somewhat discernible change in the kinetic and potential
energy spectra at around k ≥ 10, we cannot use the BO phenomenology in Eq. (17) to verify where
this break should be because there is no transition to a Kolmogorov-like spectrum following the BO
scaling. However, the ratio EV(k)/EP(k) (inset of Fig. 4(d)) behaves in the same way as in run A,
with a rapid decay at large scale compatible with k−4/5 scaling, and a near equilibrium achieved
at k ≈ kc as in run A; furthermore, it displays a similar value for kc which we can conclude is
thus determined by the overall dimensionless parameters of the run. Similar results for the other
variables are obtained for this run; for example, the helicity remains small in relative terms, and
with a rather flat spectrum.

C. The lack of isotropy

The transition in the spectral slope at kc ≈ 12 is not visible in the total energy flux; this was
already noticed in Ref. 31 in the purely rotating case: even though characteristic time scales and
nonlinear dynamics change with wavenumber, the flow of energy across scales is smooth. How-
ever, the wavenumber kc marks a clear transition in the character of the spectra, exhibiting also a
sharp decrease of the ratio of kinetic to potential energy at large scales (see Fig. 3(d)), followed
by a quasi-equipartition between both energies for k ≥ kc all the way to the dissipative scale
(although with a slight variation with wavenumber). This change of behavior in the ratio of ki-
netic to potential energy at k ≈ kc clearly indicates that wavenumbers k ≥ kc corresponds to scales
dominated by energetic exchanges between nonlinear eddies and wave modes eventually leading to
the quasi-equipartition between kinetic and potential energies expected for strongly stratified flow,8

while wavenumbers k < kc are sensitive to the effect of both buoyancy and rotation. Finally, at the
smallest scales of the flow dominated by dissipation processes, there is a broad decrease of kinetic
energy compared to potential energy which is likely a manifestation of overturning resolved in the
small scales and leading to dissipative events and mixing (see also Fig. 10 below).

Moreover, in the presence of rotation and stratification, the flow loses its mirror symmetry.
A measure of the departure from mirror symmetry can be obtained from the examination of the
relative helicity spectrum, defined here in absolute value terms as

σV(k) = |HV(k)|/[kEV(k)], (19)

with σV(k) ≤ 1 ∀k through a Schwarz inequality; σV(k) is shown in Fig. 5(a). In HIT, E(k) ∼ k−e

and H(k) ∼ k−h with e = h = 5/3 so that σV(k) ∼ 1/k indicating a (slow) return to mirror sym-
metry in the small scales. In our case, the evolution is different: σV(k) is rather flat for small
wavenumbers and decays as ∼k−3/2 for wavenumbers larger than kc. In the purely rotating case,
it can be shown using dimensional arguments59 that e + h = 4, on the basis of a small-scale flux
dominated by helicity which is an ideal invariant in that case (though not here). Assuming that the
large-scale flow is dominated by rotation in a quasi-geostrophic regime, this leads to e ≈ 5/2, close
(but not identical) to the value found here for k < kc, namely, e ≈ 11/5. It should be noted that this
regime with e = 5/2 corresponds to a fully helical flow (σV(k) = 1 ∀k), a state which is known to
be unstable,60 and therefore an energy spectrum slightly shallower than k−5/2 should be expected
instead. This energy spectrum (together with the flat spectrum of helicity) ends at a wavenumber
≈ kc, and one enters a rapid decrease of the helicity with wavenumber, slightly steeper than 1/k, and
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FIG. 5. Helicity dynamics using the data from the 40963 run A. (a) Relative helicity spectrum |HV (k)|/[kEV (k)], which
is seen as rather flat at large scale and decaying faster than 1/k at small scale. (b) Perpendicular spectrum of the helicity
compensated with k2

⊥. Note the region of excess helicity for small wavenumbers followed, for k > kc with kc ≈ 12, by a drop
in the amplitude of the compensated spectrum, and with fluctuations associated with rapid changes in sign of the helicity. For
k > 300, a sharp overall drop is observed. (c) Temporal evolution of the volume integrated helicity. (d) Probability distribution
function of the relative helicity (cosine of the angle between velocity and vorticity) averaged about the peak of dissipation.
Alignment and anti-alignment of u and ω are equally likely, as in homogeneous isotopic turbulence.

with strong fluctuations likely corresponding to frequent changes of sign in the helicity at various
scales.

In Fig. 5(b) is presented the helicity spectrum H(k⊥) compensated with k2
⊥. Note the region

of excess helicity for small wavenumbers followed, for k > kc with kc ≈ 12, by a drop in the
amplitude of the compensated spectrum, and with fluctuations associated with rapid changes in
sign of the helicity. For k > 300, a sharp drop is observed. Indeed, for wave numbers k . kc, the
compensated spectrum concentrates most of the helicity, which then decreases abruptly. This excess
helicity at intermediate scales may derive from the alignment of the vortical structures produced
by the rotation with vertical motions caused by buoyancy due to strong stratification and may
represent the physical mechanism for the generation of helicity proposed in Refs. 61 and 62 and
seen in direct numerical simulations in Ref. 17. In Fig. 5(c), we also show the temporal behavior
of the volume-averaged helicity. The flow starts with some residual positive helicity (resulting
from the random initial conditions), but after t . 4 helicity fluctuates around a value close to zero.
The lack of preference towards anti-alignment or alignment of velocity and vorticity can also be
seen in Fig. 5(d), which displays an average of PDFs of the cosine of the angle between velocity
and vorticity. Note that instantaneous PDFs (not shown) can display some slight excess at ±1,
corresponding to the fluctuations in the global helicity given in Fig. 5(c).

In the presence of rotation and stratification, the flow also loses its isotropy. In Fig. 6(a), we
show for run A the ratio of E3D(k⊥)/e(k⊥, k ∥ = 0), as defined in Eqs. (6) and (9). Both the numerator
and denominator are averaged about the peak of dissipation on the time interval t ∈ [5.3, 5.7]. This
plot shows that at very large scales, there is a roughly constant and small amount of energy in the 3D
modes compared with that in the 2D modes. Rotation seems to play a role at these scales, mediating
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FIG. 6. (a) Ratio E3D(k⊥)/e(k⊥, k∥ = 0) of spectral energy in 3D modes versus that in 2D modes for perpendicular wave
numbers. Note again the transitions for k ≈ 12, together with one at k ≈ 120. (b) Parallel spectrum of horizontal kinetic
energy e⊥(k⊥= 0, k∥) (solid line, see Equation (7)) and parallel spectrum of potential energy eP(k⊥= 0, k∥) (dashed line),
both compensated by k−3

∥ . All spectra are averaged over the peak of enstrophy, t ∈ [5.3, 5.7] and refer to run A. Note the
small flat range at large scales in e⊥, both ending with equipartition at k ≈ 12 for a small range of scales.

the distribution of kinetic energy between 2D and 3D modes and accumulating more energy in 2D
modes.21 As larger k⊥ wavenumbers are considered, this distribution changes rapidly until it reaches
a local maximum around kB. After a small decrease, the amount of energy in 3D modes far outpaces
the distribution among 2D modes as expected in strongly stratified flows, as energy is transferred
to large k⊥ and potential modes are excited. In other words, the ratio E3D(k⊥)/e(k⊥, k ∥ = 0) is
consistent with a scenario in which the rotation, effective at large scales (presumably for k < kΩ),
controls the anisotropy, while at smaller scales as the system becomes dominated by stratification at
the buoyancy scale, kB ≈ 16, the energy is transferred towards modes with small k⊥ but with k ∥ , 0,
resulting in most of the energy being in 3D modes.

According to Ref. 8, under conditions of strong stratification (Fr → 0), the equations describ-
ing the flow become self-similar. With rotation, self-similarity still holds, and it is suggested in
Ref. 8 that the buoyancy scale defined in Eq. (13) now takes the modified form

L̃B = U0F (Ro)/N = LBF (Ro), (20)

with F (Ro) → 1 when Ro → ∞ and F (Ro) → Ro−1 when Ro → 0. In this latter limit, the rotating-
buoyancy scale becomes L̃B = L0[ f /N]. As such, note that it involves now the horizontal and
vertical directions associated with stratification and rotation; it can be interpreted as well as having
the dynamics organizing itself energetically so that structures are slanted in a ratio N/ f . In other
words, under the effect of increasing rotation at fixed stratification, the scale at which the effective
Froude number in the vertical is of order unity increases as well, meaning that the large scales are
more unstable. In the quasi-geostrophic (QG) limit, for strong rotation and strong stratification, one
can write that N Lv/ f = L⊥, a relationship that can be obtained simply, for example, by equating in
the dispersion relation the terms due to rotation and to stratification. This therefore can define an
aspect ratio of structures for which rotation and stratification balance each other. Writing that L⊥ is
the integral scale Lint ≈ 2.6, we now find for the wavenumber where a change of behavior occurs
between a rotation-dominated regime to a stratification dominated regime to be k̃B ≈ 12, a value
that is in good agreement with kc as a break-point identified on several of the spectra presented here.
To reconcile this with the evaluation of KBO given earlier, we could conjecture that the energetics of
the flow at large scale is dominated by the buoyancy but the precise scale distribution of the energy
is governed by the rotation as in the QG limit.

In Fig. 6(b), we also show plots of e⊥(k⊥ = 0, k ∥) and of the spectrum of potential energy,
both compensated by k−3

∥ and shown at the peak of enstrophy. It has been predicted8 that e⊥(k⊥
= 0, k ∥) ∝ k−3

∥ , and similarly that the spectrum of the temperature fluctuations should also scale as
eP ∝ k−3

∥ . The figure shows the existence of this prediction in the kinetic energy, but if such a range
exists in the potential energy, it is rather narrow. Both spectra seem to develop shallower power
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FIG. 7. Angular kinetic energy spectra e(|k |, θ) defined in (Eq. (6)) for various co-latitudes, θ, (in deg) averaged over the
peak of enstrophy, t ∈ [5.3, 5.7] in run A and compensated by k(θ)−16/5: θ = 10◦ (black circles), θ = 20◦ (red crosses), θ = 40◦

(blue asterisk), θ = 60◦ (magenta squares), and finally θ = 80◦ (green triangles). The compensating slope corresponds to an
(uncompensated) isotropic (BO) scaling of k−11/5.

laws for k > kc. For k > kB, the temperature and horizontal kinetic energy in these spectra are in
approximate equipartition, which is expected for a self-similar range corresponding, in the primitive
equations, to a balance between nonlinearity and wave dynamics. Note that a k−3

∥ spectrum is often
observed in the ocean and is called the saturation spectrum; it is the regime in which, at least in the
purely stratified case, intermittency of the vertical velocity has been found.63

Finally, in Fig. 7 are shown the angular spectra for the kinetic energy, (cf. Eq. (6)) for several
values of the co-latitude, θ, i.e., the angle between the wave-vector k and the vertical. All spectra are
averaged evenly around the peak of dissipation using ten temporal snapshots and are compensated
by k−16/5

⊥ , which is equivalent to compensating the isotropic spectra by k−11/5 (see the discussion
after Eq. (6)). The angular spectra are computed by interpolating the time-averaged 2D axisym-
metric spectra along the line at a given co-latitude using a cubic interpolating polynomial. All scales
are anisotropic, except close to the dissipative range; this is expected, since, in this simulation,
kOZ ≈ 431 and kη ≈ 660 (see Sec. II D). Due to the dispersion relation, Eq. (5), as θ → 0, inertial
waves will dominate gravity waves, and as θ → π/2, the reverse will occur; the angular spectra
reflect roughly a continuum in this behavior. The apparent tendency at small co-latitude for the
spectrum to become very steep at large scales suggests a quasi-two-dimensionalisation due to strong
rotational effects.14 At θ = 20, the steep range governed by strong rotation at the largest scales gives
way to a BO scaling at around k ∼ 10 for a short range, and the BO scaling range seems to spread
to larger scales as θ approaches intermediate values. But as the perpendicular direction is reached,
multiple spectral ranges emerge after the BO scaling ends at the break-point k = kc ∼ 12. In fact, a
new characteristic scale seems to materialize at k ∼ 45 for the largest co-latitudes that may serve to
separate distinct dynamical balances as illustrated by the reference slopes.

V. STRUCTURES

The salient physical structures that develop in this flow are relatively large, slanted layers, as
can be seen in Fig. 8 displaying the horizontal and vertical velocities. The plots are perspective
volume renderings of a thin y-z slab. The variation in the vertical direction is seen in these plots
to be large, varying from filamentary-like thickness to structures at the integral scale, which are
comparable to the domain size. The velocity is dominated by its perpendicular component, as
already noted in Fig. 2(a).

As expected, the vorticity displays more small-scale variation. Figure 9(a) shows the verti-
cal vorticity at the peak of enstrophy in a horizontal plane for the full box and at one-half, the
linear resolution of the computation; contrary to Fig. 8, this is an actual slice (i.e., it is not a
volume rendering), and thus, it has no depth. We have ωrms ≈ 17.5 and ωmax ≈ 840, to be contrasted
with f = 2.66, indicative of the presence of locally strong vortices dominating the imposed rota-
tion. Globally, the flow is seen to be composed of large-scale vortices at roughly the size of the
initial conditions and separated by thick slanted vortex lanes with a complex tangle of small-scale
intense vortices. A zoom at full 40962 resolution (Fig. 9(b)) indicates that small-scale features are
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FIG. 8. Perspective volume renderings of a thin sub-volume in x, with full size in the y-z plane, at t = 5.54 (close to the peak
of enstrophy); the slab thickness in the x (depth) direction is 0.04 times the box size. All renderings were made using the
VAPOR visualization system.56 The y-axis is directed horizontally and the z-axis, vertically. Presented are (a) perpendicular
and (b) vertical velocity with identical color mapping. Note that the perpendicular velocity is dominant in magnitude (see
also Fig. 2(a)). This and subsequent visualizations are from run A.

FIG. 9. (a) Color image of the vertical component of the vorticity at t = 5.54 (close to the peak of enstrophy) for the full box
in a horizontal plane located at 0.45 times the vertical box length. The x-axis is directed horizontally and the y-axis, vertically.
A resolution of 2048×2048 is shown, reduced from the full original resolution of 4096×4096. The red box indicates the area
zoomed in upon in (b) at full resolution. Note that ωrms≈ 17.5 and ωmax≈ 840 (to be compared with f = 2.66). Note also
the simultaneous presence of large vortices and elongated vortex lanes made up of intense local vortices which once zoomed
upon (as in (b)) display an intricate and convoluted network of small-scale structures (see also Fig. 10 for a zoom on structures
for a vertical cut).

well-resolved in this run and are composed of a convoluted network of vortices, originating from
many local instabilities that develop in this flow. The large-scale vortices seen in this slice are
observed at most other flow planes, but it is unclear if they represent cross sections of coherent
columns such as the Taylor-like columns seen in pure rotating flows. They are, however, related
to the role played by rotation, as already noted when examining the energy flux. In previous
studies, the aspect ratio of the vortices has been found to depend on the global value of N/ f
through, for example, the variation of correlation length scales.9,66 It also depends on local values,
as determined, for example, by the local rotation of the vortex.67

Additionally, in Fig. 10 are presented several renderings of a thin x-z slab, zooming in on an
area of 0.12 × 0.1 times the box size, comparable to the vertical Taylor scale. Note that ℓOZ is
about 1/3 of this slab size. These visualizations show scales at which overturning can occur and
demonstrate the clear onset of Kelvin-Helmholtz instabilities due to shear layers. In both Figs. 8
and 10, the thickness of the layers being visualized is 0.01 in terms of the box size, roughly one
Kolmogorov (dissipation) length.
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FIG. 10. Perspective volume renderings of a thin x-z sub-volume of size 0.12×0.1 times the compute box size at t = 5.54
(close to the peak of dissipation); the slab thickness in the y-direction is 0.01 times the box size. The x-axis is directed
horizontally, and the z-axis, vertically. Presented are (a) vorticity magnitude, (b) temperature fluctuations, and (c) local
Richardson number Rig defined in Equation (14). The color bar of vorticity illustrates the relatively intense vortices that
are generated, and note the slanted Kelvin-Helmholtz layer.

We note that, in the simplified geometry used in this paper, one does not observe structures such
as mushrooms and rolls which are usually associated with comparably idealized systems but with
top and bottom thermal boundaries, and which can be either fully convective or stably stratified.
The convective rolls can form at moderate Rayleigh number and are created and sustained by
small scale plumes that detach from the boundary layer; flows characterized by transient turbulent
plumes occur at still higher Rayleigh number (see, e.g., Ref. 68 for experimental observations). The
striking contrast between the quiescent large-scale vortices and the intense vortex lanes with strong
gradients that separate them is rather reminiscent of the structures that develop in turbulent flows
through a positive feedback mechanism between waves and turbulent mixing as invoked in Refs. 69
and 70.
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FIG. 11. Probability distribution function of the gradient Richardson number defined in Eq. (14), at the latest time in the run
A simulation. The (red) crosses indicate where Rig ≤ 0.25, the classical criterion for overturning instability.64,65

In Fig. 10, a clear vortex street appears at that time in the vorticity (Fig. 10(a)), the density
(Fig. 10(b)) and the gradient Richardson number (Fig. 10(c)) defined in Eq. (14), showing that
the flow can be locally unstable to overturning. Note the strong correlation between vorticity and
temperature fluctuations and the fact that the most unstable regions of the flow at this time are not
strongly linked to the vortex street but that, in fact, other layers are being destabilized. Note also the
inter-mingling of stable and unstable structures at these scales. As mentioned earlier, the Richardson
number based on velocity gradients (which can be defined in terms of ℓz) can be considered as
an overall index of the potential instability of the flow. A decrease in ℓz can thus be interpreted
as leading to a more negative gradient Richardson number, which is indicative of an evolution
towards a flow more prone to overturning instability. Indeed, the probability distribution function
of Rig shown in Fig. 11 indicates a strong probability of the flow meeting the classical criterion for
overturning. It was found in Ref. 39 that Ri can become negative above Rλ ≈ 900, with the change
in sign coming from the change in sign of the vertical gradient of density. These results indicate that
instabilities are triggered at various locations in the flow. In fact, actual bumps in the energy spectra
have been observed in Ref. 39 at times of minima in the Richardson number for sufficiently high Rλ

that correspond to Kelvin-Helmholtz instabilities feeding directly the small scales.

VI. CONCLUSION

We have analyzed in this paper the results obtained from a high Reynolds number run of
rotating stratified turbulence with N/ f = 4.95, characteristic of the abyssal southern ocean at mid
latitudes. With a Froude number of ≈0.024 and Re ≈ 5.5 × 104, this run is not realistic in terms of
Reynolds number for geophysical fluid dynamics, and we have chosen to emphasize an examination
of scales that are still dominated by the waves, with a barely resolved isotropic Kolmogorov range at
small scales. To unravel the role played by different phenomena, we examine the partition of several
fields among scales. We conclude that the largest scales (for k < k0) are dominated by rotation,
with a negative energy flux, and that for scales larger than a critical scale, or for k0 < k < kc,
the constant-flux range is one where the source of the energy is the potential energy stored in the
large-scale gravity waves. We have presented evidence that this energy source leads potentially to a
Bolgiano-Obukhov scaling (Eq. (16)). We have also demonstrated that this scaling is not necessarily
inconsistent with the self–similarity argument of Ref. 8, and we have shown that it is also obtained
for initial conditions which are in geostrophic balance.

The steep power-law observed at large scale is consistent with many oceanic observations,
as analyzed, for example, in Refs. 24 and 71. The tendency for energy to pile-up in the large
scales, even in the spin-down case, was already noted in Ref. 72, where the inverse transfer was
attributed to the geostrophic modes, whereas the wave modes undergo a direct energy cascade (for
a high-resolution forced case using hyper-viscosity, see Ref. 73). At smaller scales, a Kolmogorov
spectrum, in terms of horizontal wave numbers, obtains before isotropy is recovered, as already
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found in several studies of stratified flows. In addition to the conspicuous Kelvin-Helmholtz insta-
bilities observed at small scale, strong mixing at small scale is clearly favored as indicated both
by an overall Froude number based on a vertical length scale of order unity and by a PDF of the
gradient Richardson number that shows directly the significant likelihood of overturning instability.

The extent in wavenumber of the Bolgiano-Obuknov scaling range is determined by the fact
that KBO defined in Eq. (17) must be larger than the wavenumber corresponding to the scale
at which the initial conditions are set. This has been discussed thoroughly in the literature, for
example, in the context of convectively unstable flows (see, e.g., Refs. 46 and 49 and references
therein). In the purely stratified case, it is shown in Ref. 51 that simply increasing the Richardson
number increases KBO. But this computation uses a forcing that imposes bi-dimensionalization
directly, so a flow that does not use such a forcing may easily develop in such a way as to counteract
this effect. In RST, rotation is bound to play a role as well and direct some of the energy towards
large scales in the forced case. But in both cases, a strong stratification is a prerequisite, as well
as a high Reynolds number so that RB be sufficiently large that a Kolmogorov range develop at
small scale. For atmospheric observations, the same ideas likely hold: an extended BO scaling is
likely in regions of large Ri where RB is sufficiently large as well. It has been conjectured46 that in
addition to strong stratification, the Bolgiano-Obukhov scale shows a variation with Prandtl number,
Pr, as KBO ∼ Pr1/4. Then, the Kolmogorov dissipation scale relates to KBO via kη/KBO ∼ Pr−1/2,
suggesting that the larger the Pr becomes, the more difficult it becomes to isolate the physics of the
convective Bolgiano-Obukhov scaling from dissipative effects without scale separation that is very
high for both the kinetic and potential energies, and this is one of the chief challenges in verifying
this Pr dependence numerically using DNS.

The regime with small Froude number and yet large buoyancy Reynolds number and moder-
ate rotation, characteristic of many flows in geophysical fluid dynamics, remains a computational
challenge, in particular when assessing highly non-local interactions between large scales fed by the
inverse cascade of energy in the presence of rotation, even if weak, and small scales fed by the direct
cascade of energy. Non-local interactions have been identified in such flows, for example, in purely
rotating flows,74 in the context of the zig-zag instability,75 and in rotating stratified turbulence.28

This clearly points out the need to resolve the large-scale as well as the small-scale dynamics. In this
regard, fundamental and idealized studies such as the one presented in this paper will remain valu-
able for some time to come, if only because they may lead to improved anisotropic and multi-scale
parametrisations of such flows.

Many issues remain unexplored and one should analyze in detail, for example, the distribution
of energy among the normal modes of the flow (see, e.g., Refs. 20, 27, and 66), the small-scale
behavior of the flow, and the role that helical coherent structures can play in mixing, transport,
and intermittency in RST flows, as, for example, in tropical cyclogenesis.76 Indeed, helicity or
velocity-vorticity correlations are an ideal (ν = 0) invariant of the homogeneous isotropic case (as
well as in the presence of solid body rotation), but when stratification is added, it can be created—as
evidenced here—by quasi-geostrophic large-scale flows as a consequence of thermal winds.17,62 It
is known that, for HIT in the presence of helical coherent structures, mixing is modified. There are
already sub-grid scale models of turbulence showing that, when taking helicity into account, the
modeling capability is enhanced in a measurable fashion,77,78 and thus, the present study at high
resolution may provide a useful database for testing a variety of parametrization schemes.
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