12 research outputs found

    Construction of a computable cell proliferation network focused on non-diseased lung cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Critical to advancing the systems-level evaluation of complex biological processes is the development of comprehensive networks and computational methods to apply to the analysis of systems biology data (transcriptomics, proteomics/phosphoproteomics, metabolomics, etc.). Ideally, these networks will be specifically designed to capture the normal, non-diseased biology of the tissue or cell types under investigation, and can be used with experimentally generated systems biology data to assess the biological impact of perturbations like xenobiotics and other cellular stresses. Lung cell proliferation is a key biological process to capture in such a network model, given the pivotal role that proliferation plays in lung diseases including cancer, chronic obstructive pulmonary disease (COPD), and fibrosis. Unfortunately, no such network has been available prior to this work.</p> <p>Results</p> <p>To further a systems-level assessment of the biological impact of perturbations on non-diseased mammalian lung cells, we constructed a lung-focused network for cell proliferation. The network encompasses diverse biological areas that lead to the regulation of normal lung cell proliferation (Cell Cycle, Growth Factors, Cell Interaction, Intra- and Extracellular Signaling, and Epigenetics), and contains a total of 848 nodes (biological entities) and 1597 edges (relationships between biological entities). The network was verified using four published gene expression profiling data sets associated with measured cell proliferation endpoints in lung and lung-related cell types. Predicted changes in the activity of core machinery involved in cell cycle regulation (RB1, CDKN1A, and MYC/MYCN) are statistically supported across multiple data sets, underscoring the general applicability of this approach for a network-wide biological impact assessment using systems biology data.</p> <p>Conclusions</p> <p>To the best of our knowledge, this lung-focused Cell Proliferation Network provides the most comprehensive connectivity map in existence of the molecular mechanisms regulating cell proliferation in the lung. The network is based on fully referenced causal relationships obtained from extensive evaluation of the literature. The computable structure of the network enables its application to the qualitative and quantitative evaluation of cell proliferation using systems biology data sets. The network is available for public use.</p

    Systematic Verification of Upstream Regulators of a Computable Cellular Proliferation Network Model on Non-Diseased Lung Cells Using a Dedicated Dataset

    Get PDF
    We recently constructed a computable cell proliferation network (CPN) model focused on lung tissue to unravel complex biological processes and their exposure-related perturbations from molecular profiling data. The CPN consists of edges and nodes representing upstream controllers of gene expression largely generated from transcriptomics datasets using Reverse Causal Reasoning (RCR). Here, we report an approach to biologically verify the correctness of upstream controller nodes using a specifically designed, independent lung cell proliferation dataset. Normal human bronchial epithelial cells were arrested at G1/S with a cell cycle inhibitor. Gene expression changes and cell proliferation were captured at different time points after release from inhibition. Gene set enrichment analysis demonstrated cell cycle response specificity via an overrepresentation of proliferation related gene sets. Coverage analysis of RCR-derived hypotheses returned statistical significance for cell cycle response specificity across the whole model as well as for the Growth Factor and Cell Cycle sub-network models

    A Modular Cell-Type Focused Inflammatory Process Network Model for Non-Diseased Pulmonary Tissue

    Get PDF
    Exposure to environmental stressors such as cigarette smoke (CS) elicits a variety of biological responses in humans, including the induction of inflammatory responses. These responses are especially pronounced in the lung, where pulmonary cells sit at the interface between the body's internal and external environments. We combined a literature survey with a computational analysis of multiple transcriptomic data sets to construct a computable causal network model (the Inflammatory Process Network (IPN)) of the main pulmonary inflammatory processes. The IPN model predicted decreased epithelial cell barrier defenses and increased mucus hypersecretion in human bronchial epithelial cells, and an attenuated pro-inflammatory (M1) profile in alveolar macrophages following exposure to CS, consistent with prior results. The IPN provides a comprehensive framework of experimentally supported pathways related to CS-induced pulmonary inflammation. The IPN is freely available to the scientific community as a resource with broad applicability to study the pathogenesis of pulmonary disease
    corecore