2,256 research outputs found
In vitro and in vivo selection of potentially probiotic lactobacilli from Nocellara del Belice table olives
Table olives are increasingly recognized as a vehicle as well as a source of probiotic bacteria, especially those fermented with traditional procedures based on the activity of indigenous microbial consortia, originating from local environments. In the present study, we report characterization at the species level of 49 Lactic Acid Bacteria (LAB) strains deriving from Nocellara del Belice table olives fermented with the Spanish or Castelvetrano methods, recently isolated in our previous work. Ribosomal 16S DNA analysis allowed identification of 4 Enterococcus gallinarum, 3 E. casseliflavus, 14 Leuconostoc mesenteroides, 19 Lactobacillus pentosus, 7 L. coryniformis, and 2 L. oligofermentans. The L. pentosus and L. coryniformis strains were subjected to further screening to evaluate their probiotic potential, using a combination of in vitro and in vivo approaches. The majority of them showed high survival rates under in vitro simulated gastro-intestinal conditions, and positive antimicrobial activity against Salmonella enterica serovar Typhimurium, Listeria monocytogenes and enterotoxigenic Escherichia coli (ETEC) pathogens. Evaluation of antibiotic resistance to ampicillin, tetracycline, chloramphenicol, or erythromycin was also performed for all selected strains. Three L. coryniformis strains were selected as very good performers in the initial in vitro testing screens, they were antibiotic susceptible, as well as capable of inhibiting pathogen growth in vitro. Parallel screening employing the simplified model organism Caenorhabditis elegans, fed the Lactobacillus strains as a food source, revealed that one L. pentosus and one L. coryniformis strains significantly induced prolongevity effects and protection from pathogen-mediated infection. Moreover, both strains displayed adhesion to human intestinal epithelial Caco-2 cells and were able to outcompete foodborne pathogens for cell adhesion. Overall, these results are suggestive of beneficial features for novel LAB strains, which renders them promising candidates as starters for the manufacturing of fermented table olives with probiotic added value
Thromboembolic events in patients treated with anti-angiogenic drugs
Induction of neo-angiogenesis is a fundamental step in many pathological conditions. The therapeutic value of inhibiting angiogenesis is an interesting area of research in oncology, with vascular endothelial growth factor (VEGF) being the most suitable anti-angiogenic target. In the last decade a number of anti-VEGF drugs have demonstrated, especially in combination with standard chemotherapy, clinical efficacy in the treatment of different solid tumor types. As data from clinical trials on anti-VEGF drugs are becoming available, it is increasingly recognized that VEGF, in addition to being a permeability, proliferation, and migration factor, is also a maintenance and protection factor for endothelial cells, being capable of regulating multiple biological functions, i.e. the production of vasoactive mediators and the expression of components of the thrombolytic and coagulation pathways. Consequently, the disturbance of vascular homeostasis by blocking VEGF may lead to endothelial dysfunction and adverse vascular effects, such as venous and arterial thromboembolic events. In preclinical models angiogenesis and the increased expression of VEGF has been associated to altered expression of proinflammatory genes. These genes may be regulated in a biphasic manner, and it is possible that anti-VEGF therapy may disrupt a negative feedback loop that leads to potential in situ thrombus formation. Accordingly, combination treatment with bevacizumab and chemotherapy, compared with chemotherapy alone, was recently associated with an increased risk of thromboembolism. The present review considers the biological mechanisms and clinical impact of thromboembolic complications during anti-angiogenic treatments in cancer patients
Superconductor Microwave Kinetic Inductance Detectors: System Model of the Readout Electronics
This paper deals with the readout electronics needed by superconductor Microwave Kinetic Inductance Detectors (MKIDs). MKIDs are typically implemented in the form of cryogenic-cooled high quality factor microwave resonator. The natural frequency of these resonators changes as a millimeter or sub-millimeter wave radiation impinges on the resonator itself. A quantitative system model of the readout electronics (very similar to that of a vector network analyzer) has been implemented under ADS environment and tested by several simulation experiments. The developed model is a tool to further optimize the readout electronic and to design the frequency allocation of parallel-connected MKIDs resonators. The applications of MKIDs will be in microwave and millimeter-wave radiometric imaging as well as in radio-astronomy focal plane arrays
Phytoplankton composition in the coastal Magnetic Island lagoon, Western Pacific Ocean (Australia)
1 - Coastal lagoons have traditionally been considered as transitional systems between continental and marine domains. The phytoplankton plays a key role in these aquatic environments, forming the base of the food web and having a substantial function in nutrient dynamics and in the carbon biogeochemical cycle.2 - Due to their short life cycle, planktonic algae respond quickly to environmental changes and they are thus a valuable indicator of water quality. It is essential to investigate the development of phytoplankton populations to understand the biological functioning and to detect changes in aquatic systems.3 - Phytoplankton studies in the Australian estuaries and lagoons are relatively scarce. This study has provided a broad perspective and preliminary information on taxonomic structure of phytoplankton guilds for the Magnetic Island Lagoon (Queensland, Australia). This work may provide valuable information of interest to later ecological studies.4 - In the whole sampling a total of 143 taxa were identified. In terms of species richness, diatoms (Bacillariophyceae, Coscinodiscophyceae, Fragilariophyceae) and dinoflagellates (Dinophyceae) were the most important groups. In taxonomic terms, diatoms were the major contributor to the phytoplankton composition (~ 70%) whereas Dinophyceae were moderately abundant (~23%). Diatoms are a very important component in estuarine and shallow coastal wetlands and they are increasingly being utilized as indicators of environmental change
Wired on Steroids: Sexual Differentiation of the Brain and Its Role in the Expression of Sexual Partner Preferences
The preference to seek out a sexual partner of the opposite sex is robust and ensures reproduction and survival of the species. Development of female-directed partner preference in the male is dependent on exposure of the developing brain to gonadal steroids synthesized during critical periods of sexual differentiation of the central nervous system. In the absence of androgen exposure, a male-directed partner preference develops. The development and expression of sexual partner preference has been extensively studied in rat, ferret, and sheep model systems. From these models it is clear that gonadal testosterone, often through estrogenic metabolites, cause both masculinization and defeminization of behavior during critical periods of brain development. Changes in the steroid environment during these critical periods result in atypical sexual partner preference. In this manuscript, we review the major findings which support the hypothesis that the organizational actions of sex steroids are responsible for sexual differentiation of sexual partner preferences in select non-human species. We also explore how this information has helped to frame our understanding of the biological influences on human sexual orientation and gender identity
Crustal Structure Across Northern Victoria Land, Antarctica, From Receiver Function Analysis
Global crustal model, from gravity studies, imaged a thick crust (>40 km) under Eastern Antartic craton (EAC). This global trend ends abruptly west of the Transantarctic Mountains (TAM), which border EAC along its western margins. There, the crust raises up to about 20 km. While this model points out the difference between EAC and the Ross sea crustal structures, its intrinsic spatial resolution gives little help to solve some regional geophysical issues, like the TAM orogenesis and the formation and nature of the Wilkes Basin. In this study, teleseismic Receiver Functions (RFs) are used to image the S-velocity crustal structure in finer details. We computed RFs from teleseismic events recorded during three different austral summer compaigns: BackTAM, WIBEM and WISE. Broadband seismic stations were deployed along a transect which spans from the coast of Northern Victoria land (NVL) to the far interior of the EAC plateau. The transect, almost perpendicular to the regional TAM axis, came across four different geological/geophysical settings: the alloctonhous terranes of the NVL, the TAM sector, the Wilkes Basin and the EAC plateau. Each area shows peculiar crustal structures and we propose both finer local S-velocity models and a regional crustal model
Moho-depth and subglacial sedimentary layer thickness in the Wilkes Basin from Receiver Function Analysis
Wilkes Basin lies to the east of the Transantarctic Mountains. The origin of this sub-glacial basin is still controversial. Flexural uplift of the Transantarctic Mountains has been suggested as the geophysical process which generated the basin (Stern & ien Brink, 1989). Other studies proposed a continental rift structure for this region (Ferraccioli et al., 2001). The two models differ mainly in the crustal structure predicted beneath the basin. In the former, crustal thickning is expected to be originated from the high rigidity of the East Antarctic Craton lithosphere. Otherwise, the rift structure hypothesis is consistent with a broad crustal thinning. During the WIBEM 2003 campaign, we deployed five broadband seismic stations across the basin. We selected high signal/noise teleseismic recording to compute a data-set of receiver functions. We applied a classical inversion scheme, the Neighbourhood Algorithm, to our data-set. Here, two different and complementary studies are presented. We constrain the Moho geometry beneath the Wilkes Basin from the analysis of low-frequency P-to-S conversion at the base of the crust. Also, we investigate the nature of the basin mapping the presence of subglacial sediments using the P-to-S conversion at the ice-bedrock interface
- ā¦