331 research outputs found

    Unravelling the relationship between adaptation pattern and yield formation strategies in Mediterranean durum wheat landraces

    Get PDF
    Understanding the environmental and genetic factors behind the adaptation of landraces to different environments may help design breeding strategies and to promote yield improvement. Based on previous results that showed a differential frequency of alleles associated with important agronomic traits in landraces that originated in the east (EM) and the west (WM) of the Mediterranean Basin, this study analysed their patterns of adaptation and the influence this adaptation has on yield formation strategies. Thirteen and thirty-one genotypes selected according to their membership coefficient (q>0.900) from the EM and the WM genetic subpopulations, respectively, were tested during six crop seasons under rainfed Mediterranean conditions. Yearly yields ranged from 3173 to 4917 kg/ha. EM landraces showed more spikes per unit area, while WM ones showed consistently taller plants, larger cycle length to anthesis, a shorter grain filling period, a higher grain filling rate and heavier grains. The contrasting pattern of adaptation of the two subpopulations was based on a differential ability to use the water available before and after anthesis. The yield of EM landraces, originated in the warmest and driest area of the Mediterranean basin, relied mostly on water input before anthesis, which was beneficial for spike production and for the accumulation of water-soluble carbohydrates in the stems prior to anthesis, to be remobilized to grains during grain filling. WM landraces performed better in environments with high water input during grain filling, which was efficiently used to increase grain setting and produce heavy grains. EM landraces could be used in breeding to improve the adaptation of modern varieties to terminal drought.info:eu-repo/semantics/publishedVersio

    Application of power ultrasound on the convective drying of fruits and vegetables: effects on quality

    Full text link
    This is the peer reviewed version of the following article:Rogríguez, Óscar, Eim, Valeria S., Roselló Matas, Carmen, Femenía, Antonio, Carcel Carrión, Juan Andrés, Simal, Susana. (2018). Application of power ultrasound on the convective drying of fruits and vegetables: effects on quality.Journal of the Science of Food and Agriculture, 98, 5, 1660-1673. DOI: 10.1002/jsfa.8673, which has been published in final form at http://doi.org/10.1002/jsfa.8673. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] Drying gives rise to products with a long shelf life by reducing the water activity to a level that is sufficiently low to inhibit the growth of microorganisms, enzymatic reactions and other deteriorative reactions. Despite the benefits of this operation, the quality of heat sensitive products is diminished when high temperatures are used. The use of low drying temperatures reduces the heat damage but, because of a longer drying time, oxidation reactions occur and a reduction of the quality is also observed. Thus, drying is a method that lends itself to being intensified. For this reason, alternative techniques are being studied. Power ultrasound is considered as an emerging and promising technology in the food industry. The potential of this technology relies on its ability to accelerate the mass transfer processes in solid-liquid and solid-gas systems. Intensification of the drying process with power ultrasound can be achieved by modifying the product behavior during drying, using pre-treatments such as soaking in a liquid medium assisted acoustically or, during the drying process itself, by applying power ultrasound in the gaseous medium. This review summarises the effects of the application of the power ultrasound on the quality of different dried products, such as fruits and vegetables, when the acoustic energy is intended to intensify the drying process, either when the application is performed before pretreatment or during the drying process. (c) 2017 Society of Chemical IndustryWe thank Conselleria d'Agricultura, Medi Ambient i Territori and Fons de Garantia Agraria i Pesquera de les Illes Balears (FOGAIBA) and the Spanish Government (MEIC) for financial support (RTA2015-00060-C04, AIA01/15).Rogríguez, Ó.; Eim, VS.; Roselló Matas, C.; Femenía, A.; Carcel Carrión, JA.; Simal, S. (2018). Application of power ultrasound on the convective drying of fruits and vegetables: effects on quality. Journal of the Science of Food and Agriculture. 98(5):1660-1673. https://doi.org/10.1002/jsfa.8673S16601673985Fernandes, F. A. N., Rodrigues, S., Cárcel, J. A., & García-Pérez, J. V. (2015). Ultrasound-Assisted Air-Drying of Apple (Malus domestica L.) and Its Effects on the Vitamin of the Dried Product. Food and Bioprocess Technology, 8(7), 1503-1511. doi:10.1007/s11947-015-1519-7Cárcel, J. A., García-Pérez, J. V., Riera, E., Rosselló, C., & Mulet, A. (2014). Drying Assisted by Power Ultrasound. Modern Drying Technology, 237-278. doi:10.1002/9783527631704.ch08Ozuna, C., Gómez Álvarez-Arenas, T., Riera, E., Cárcel, J. A., & Garcia-Perez, J. V. (2014). Influence of material structure on air-borne ultrasonic application in drying. Ultrasonics Sonochemistry, 21(3), 1235-1243. doi:10.1016/j.ultsonch.2013.12.015Venkatesh, M. S., & Raghavan, G. S. V. (2004). An Overview of Microwave Processing and Dielectric Properties of Agri-food Materials. Biosystems Engineering, 88(1), 1-18. doi:10.1016/j.biosystemseng.2004.01.007Feng, H., Yin, Y., & Tang, J. (2012). Microwave Drying of Food and Agricultural Materials: Basics and Heat and Mass Transfer Modeling. Food Engineering Reviews, 4(2), 89-106. doi:10.1007/s12393-012-9048-xOey, I., Lille, M., Van Loey, A., & Hendrickx, M. (2008). Effect of high-pressure processing on colour, texture and flavour of fruit- and vegetable-based food products: a review. Trends in Food Science & Technology, 19(6), 320-328. doi:10.1016/j.tifs.2008.04.001Chen, D., Xi, H., Guo, X., Qin, Z., Pang, X., Hu, X., … Wu, J. (2013). Comparative study of quality of cloudy pomegranate juice treated by high hydrostatic pressure and high temperature short time. Innovative Food Science & Emerging Technologies, 19, 85-94. doi:10.1016/j.ifset.2013.03.003Ade-Omowaye, B. I. O., Angersbach, A., Taiwo, K. A., & Knorr, D. (2001). Use of pulsed electric field pre-treatment to improve dehydration characteristics of plant based foods. Trends in Food Science & Technology, 12(8), 285-295. doi:10.1016/s0924-2244(01)00095-4Chemat, F., Zill-e-Huma, & Khan, M. K. (2011). Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrasonics Sonochemistry, 18(4), 813-835. doi:10.1016/j.ultsonch.2010.11.023Fernandes, F. A. N., & Rodrigues, S. (2007). Ultrasound as pre-treatment for drying of fruits: Dehydration of banana. Journal of Food Engineering, 82(2), 261-267. doi:10.1016/j.jfoodeng.2007.02.032Cárcel, J. A., García-Pérez, J. V., Benedito, J., & Mulet, A. (2012). Food process innovation through new technologies: Use of ultrasound. Journal of Food Engineering, 110(2), 200-207. doi:10.1016/j.jfoodeng.2011.05.038Fernandes, F. A. N., Linhares, F. E., & Rodrigues, S. (2008). Ultrasound as pre-treatment for drying of pineapple. Ultrasonics Sonochemistry, 15(6), 1049-1054. doi:10.1016/j.ultsonch.2008.03.009García-Pérez, J. V., Cárcel, J. A., Benedito, J., & Mulet, A. (2007). Power Ultrasound Mass Transfer Enhancement in Food Drying. Food and Bioproducts Processing, 85(3), 247-254. doi:10.1205/fbp07010Mason, T. J., Riera, E., Vercet, A., & Lopez-Buesa, P. (2005). Application of Ultrasound. Emerging Technologies for Food Processing, 323-351. doi:10.1016/b978-012676757-5/50015-3Soria, A. C., & Villamiel, M. (2010). Effect of ultrasound on the technological properties and bioactivity of food: a review. Trends in Food Science & Technology, 21(7), 323-331. doi:10.1016/j.tifs.2010.04.003Pingret, D., Fabiano-Tixier, A.-S., & Chemat, F. (2013). Degradation during application of ultrasound in food processing: A review. Food Control, 31(2), 593-606. doi:10.1016/j.foodcont.2012.11.039Kek, S. P., Chin, N. L., & Yusof, Y. A. (2013). Direct and indirect power ultrasound assisted pre-osmotic treatments in convective drying of guava slices. Food and Bioproducts Processing, 91(4), 495-506. doi:10.1016/j.fbp.2013.05.003Ricce, C., Rojas, M. L., Miano, A. C., Siche, R., & Augusto, P. E. D. (2016). Ultrasound pre-treatment enhances the carrot drying and rehydration. Food Research International, 89, 701-708. doi:10.1016/j.foodres.2016.09.030Gamboa-Santos, J., Montilla, A., Soria, A. C., & Villamiel, M. (2012). Effects of conventional and ultrasound blanching on enzyme inactivation and carbohydrate content of carrots. European Food Research and Technology, 234(6), 1071-1079. doi:10.1007/s00217-012-1726-7Romero J., C. A., & Yépez V., B. D. (2015). Ultrasound as pretreatment to convective drying of Andean blackberry (Rubus glaucus Benth). Ultrasonics Sonochemistry, 22, 205-210. doi:10.1016/j.ultsonch.2014.06.011Santacatalina, J. V., Contreras, M., Simal, S., Cárcel, J. A., & Garcia-Perez, J. V. (2016). Impact of applied ultrasonic power on the low temperature drying of apple. Ultrasonics Sonochemistry, 28, 100-109. doi:10.1016/j.ultsonch.2015.06.027Rodríguez, Ó., Llabrés, P. J., Simal, S., Femenia, A., & Rosselló, C. (2014). Intensification of Predrying Treatments by Means of Ultrasonic Assistance: Effects on Water Mobility, PPO Activity, Microstructure, and Drying Kinetics of Apple. Food and Bioprocess Technology, 8(3), 503-515. doi:10.1007/s11947-014-1424-5Jambrak, A. R., Mason, T. J., Paniwnyk, L., & Lelas, V. (2007). Accelerated drying of button mushrooms, Brussels sprouts and cauliflower by applying power ultrasound and its rehydration properties. Journal of Food Engineering, 81(1), 88-97. doi:10.1016/j.jfoodeng.2006.10.009Fernandes, F. A. N., Gallão, M. I., & Rodrigues, S. (2008). Effect of osmotic dehydration and ultrasound pre-treatment on cell structure: Melon dehydration. LWT - Food Science and Technology, 41(4), 604-610. doi:10.1016/j.lwt.2007.05.007Beck, S. M., Sabarez, H., Gaukel, V., & Knoerzer, K. (2014). Enhancement of convective drying by application of airborne ultrasound – A response surface approach. Ultrasonics Sonochemistry, 21(6), 2144-2150. doi:10.1016/j.ultsonch.2014.02.013Yao, Y. (2016). Enhancement of mass transfer by ultrasound: Application to adsorbent regeneration and food drying/dehydration. Ultrasonics Sonochemistry, 31, 512-531. doi:10.1016/j.ultsonch.2016.01.039Oladejo, A. O., & Ma, H. (2016). Optimisation of ultrasound-assisted osmotic dehydration of sweet potato (Ipomea batatas) using response surface methodology. Journal of the Science of Food and Agriculture, 96(11), 3688-3693. doi:10.1002/jsfa.7552Fernandes, F. A. N., & Rodrigues, S. (2017). Osmotic Dehydration and Blanching. Ultrasound in Food Processing, 311-328. doi:10.1002/9781118964156.ch11Azoubel, P. M., Baima, M. do A. M., Amorim, M. da R., & Oliveira, S. S. B. (2010). Effect of ultrasound on banana cv Pacovan drying kinetics. Journal of Food Engineering, 97(2), 194-198. doi:10.1016/j.jfoodeng.2009.10.009Rodríguez, Ó., Gomes, W., Rodrigues, S., & Fernandes, F. A. N. (2017). Effect of acoustically assisted treatments on vitamins, antioxidant activity, organic acids and drying kinetics of pineapple. Ultrasonics Sonochemistry, 35, 92-102. doi:10.1016/j.ultsonch.2016.09.006Fijalkowska, A., Nowacka, M., Wiktor, A., Sledz, M., & Witrowa-Rajchert, D. (2015). Ultrasound as a Pretreatment Method to Improve Drying Kinetics and Sensory Properties of Dried Apple. Journal of Food Process Engineering, 39(3), 256-265. doi:10.1111/jfpe.12217Nowacka, M., Wiktor, A., Śledź, M., Jurek, N., & Witrowa-Rajchert, D. (2012). Drying of ultrasound pretreated apple and its selected physical properties. Journal of Food Engineering, 113(3), 427-433. doi:10.1016/j.jfoodeng.2012.06.013Stojanovic, J., & Silva, J. L. (2007). Influence of osmotic concentration, continuous high frequency ultrasound and dehydration on antioxidants, colour and chemical properties of rabbiteye blueberries. Food Chemistry, 101(3), 898-906. doi:10.1016/j.foodchem.2006.02.044Siucińska, K., Mieszczakowska-Frąc, M., Połubok, A., & Konopacka, D. (2016). Effects of Ultrasound Assistance on Dehydration Processes and Bioactive Component Retention of Osmo-Dried Sour Cherries. Journal of Food Science, 81(7), C1654-C1661. doi:10.1111/1750-3841.13368Oliveira, F. I. P., Gallão, M. I., Rodrigues, S., & Fernandes, F. A. N. (2010). Dehydration of Malay Apple (Syzygium malaccense L.) Using Ultrasound as Pre-treatment. Food and Bioprocess Technology, 4(4), 610-615. doi:10.1007/s11947-010-0351-3Çakmak, R. Ş., Tekeoğlu, O., Bozkır, H., Ergün, A. R., & Baysal, T. (2016). Effects of electrical and sonication pretreatments on the drying rate and quality of mushrooms. LWT - Food Science and Technology, 69, 197-202. doi:10.1016/j.lwt.2016.01.032Azoubel, P. M., da Rocha Amorim, M., Oliveira, S. S. B., Maciel, M. I. S., & Rodrigues, J. D. (2015). Improvement of Water Transport and Carotenoid Retention During Drying of Papaya by Applying Ultrasonic Osmotic Pretreatment. Food Engineering Reviews, 7(2), 185-192. doi:10.1007/s12393-015-9120-4Mothibe, K. J., Zhang, M., Mujumdar, A. S., Wang, Y. C., & Cheng, X. (2014). Effects of Ultrasound and Microwave Pretreatments of Apple Before Spouted Bed Drying on Rate of Dehydration and Physical Properties. Drying Technology, 32(15), 1848-1856. doi:10.1080/07373937.2014.952381Rawson, A., Tiwari, B. K., Tuohy, M. G., O’Donnell, C. P., & Brunton, N. (2011). Effect of ultrasound and blanching pretreatments on polyacetylene and carotenoid content of hot air and freeze dried carrot discs. Ultrasonics Sonochemistry, 18(5), 1172-1179. doi:10.1016/j.ultsonch.2011.03.009Tao, Y., Wang, P., Wang, Y., Kadam, S. U., Han, Y., Wang, J., & Zhou, J. (2016). Power ultrasound as a pretreatment to convective drying of mulberry ( Morus alba L.) leaves: Impact on drying kinetics and selected quality properties. Ultrasonics Sonochemistry, 31, 310-318. doi:10.1016/j.ultsonch.2016.01.012Sledz, M., Wiktor, A., Rybak, K., Nowacka, M., & Witrowa-Rajchert, D. (2016). The impact of ultrasound and steam blanching pre-treatments on the drying kinetics, energy consumption and selected properties of parsley leaves. Applied Acoustics, 103, 148-156. doi:10.1016/j.apacoust.2015.05.006Dias da Silva, G., Barros, Z. M. P., de Medeiros, R. A. B., de Carvalho, C. B. O., Rupert Brandão, S. C., & Azoubel, P. M. (2016). Pretreatments for melon drying implementing ultrasound and vacuum. LWT, 74, 114-119. doi:10.1016/j.lwt.2016.07.039Cárcel, J. A., Benedito, J., Rosselló, C., & Mulet, A. (2007). Influence of ultrasound intensity on mass transfer in apple immersed in a sucrose solution. Journal of Food Engineering, 78(2), 472-479. doi:10.1016/j.jfoodeng.2005.10.018Garcia-Noguera, J., Oliveira, F. I. P., Gallão, M. I., Weller, C. L., Rodrigues, S., & Fernandes, F. A. N. (2010). Ultrasound-Assisted Osmotic Dehydration of Strawberries: Effect of Pretreatment Time and Ultrasonic Frequency. Drying Technology, 28(2), 294-303. doi:10.1080/07373930903530402Kowalski, S. J., Szadzińska, J., & Pawłowski, A. (2015). Ultrasonic-Assisted Osmotic Dehydration of Carrot Followed by Convective Drying with Continuous and Intermittent Heating. Drying Technology, 33(13), 1570-1580. doi:10.1080/07373937.2015.1012265Fernandes, F. A. N., Gallão, M. I., & Rodrigues, S. (2009). Effect of osmosis and ultrasound on pineapple cell tissue structure during dehydration. Journal of Food Engineering, 90(2), 186-190. doi:10.1016/j.jfoodeng.2008.06.021Cárcel, J. A., García-Pérez, J. V., Riera, E., Rosselló, C., & Mulet, A. (2017). Ultrasonically Assisted Drying. Ultrasound in Food Processing, 371-391. doi:10.1002/9781118964156.ch14Gamboa-Santos, J., Montilla, A., Cárcel, J. A., Villamiel, M., & Garcia-Perez, J. V. (2014). Air-borne ultrasound application in the convective drying of strawberry. Journal of Food Engineering, 128, 132-139. doi:10.1016/j.jfoodeng.2013.12.021Kowalski, S. J., & Pawłowski, A. (2015). Intensification of apple drying due to ultrasound enhancement. Journal of Food Engineering, 156, 1-9. doi:10.1016/j.jfoodeng.2015.01.023Sabarez, H. T., Gallego-Juarez, J. A., & Riera, E. (2012). Ultrasonic-Assisted Convective Drying of Apple Slices. Drying Technology, 30(9), 989-997. doi:10.1080/07373937.2012.677083Cárcel, J. A., Garcia-Perez, J. V., Riera, E., & Mulet, A. (2011). Improvement of Convective Drying of Carrot by Applying Power Ultrasound—Influence of Mass Load Density. Drying Technology, 29(2), 174-182. doi:10.1080/07373937.2010.483032Gallego-Juarez, J. A. (2010). High-power ultrasonic processing: Recent developments and prospective advances. Physics Procedia, 3(1), 35-47. doi:10.1016/j.phpro.2010.01.006Gallego-Juárez, J. A., Riera, E., de la Fuente Blanco, S., Rodríguez-Corral, G., Acosta-Aparicio, V. M., & Blanco, A. (2007). Application of High-Power Ultrasound for Dehydration of Vegetables: Processes and Devices. Drying Technology, 25(11), 1893-1901. doi:10.1080/07373930701677371Frias, J., Peñas, E., Ullate, M., & Vidal-Valverde, C. (2010). Influence of Drying by Convective Air Dryer or Power Ultrasound on the Vitamin C and β-Carotene Content of Carrots. Journal of Agricultural and Food Chemistry, 58(19), 10539-10544. doi:10.1021/jf102797yKowalski, S. J., Pawłowski, A., Szadzińska, J., Łechtańska, J., & Stasiak, M. (2016). High power airborne ultrasound assist in combined drying of raspberries. Innovative Food Science & Emerging Technologies, 34, 225-233. doi:10.1016/j.ifset.2016.02.006Schössler, K., Thomas, T., & Knorr, D. (2012). Modification of cell structure and mass transfer in potato tissue by contact ultrasound. Food Research International, 49(1), 425-431. doi:10.1016/j.foodres.2012.07.027Schössler, K., Jäger, H., & Knorr, D. (2012). Effect of continuous and intermittent ultrasound on drying time and effective diffusivity during convective drying of apple and red bell pepper. Journal of Food Engineering, 108(1), 103-110. doi:10.1016/j.jfoodeng.2011.07.018Schössler, K., Jäger, H., & Knorr, D. (2012). Novel contact ultrasound system for the accelerated freeze-drying of vegetables. Innovative Food Science & Emerging Technologies, 16, 113-120. doi:10.1016/j.ifset.2012.05.010García-Pérez JV Carcel JA Mulet A Riera E Gallego-Juarez JA Ultrasonic drying for food preservation Power Ultrasonics Woodhead Publishing Oxford 875 910 2015Garcia-Perez, J. V., Carcel, J. A., Riera, E., Rosselló, C., & Mulet, A. (2012). Intensification of Low-Temperature Drying by Using Ultrasound. Drying Technology, 30(11-12), 1199-1208. doi:10.1080/07373937.2012.675533Rodríguez, Ó., Santacatalina, J. V., Simal, S., Garcia-Perez, J. V., Femenia, A., & Rosselló, C. (2014). Influence of power ultrasound application on drying kinetics of apple and its antioxidant and microstructural properties. Journal of Food Engineering, 129, 21-29. doi:10.1016/j.jfoodeng.2014.01.001Santacatalina, J. V., Rodríguez, O., Simal, S., Cárcel, J. A., Mulet, A., & García-Pérez, J. V. (2014). Ultrasonically enhanced low-temperature drying of apple: Influence on drying kinetics and antioxidant potential. Journal of Food Engineering, 138, 35-44. doi:10.1016/j.jfoodeng.2014.04.003Ozuna, C., Cárcel, J. A., García-Pérez, J. V., & Mulet, A. (2011). Improvement of water transport mechanisms during potato drying by applying ultrasound. Journal of the Science of Food and Agriculture, 91(14), 2511-2517. doi:10.1002/jsfa.4344Fernandes, F. A. N., Rodrigues, S., García-Pérez, J. V., & Cárcel, J. A. (2015). Effects of ultrasound-assisted air-drying on vitamins and carotenoids of cherry tomatoes. Drying Technology, 34(8), 986-996. doi:10.1080/07373937.2015.1090445Garcia-Perez, J. V., Ortuño, C., Puig, A., Carcel, J. A., & Perez-Munuera, I. (2011). Enhancement of Water Transport and Microstructural Changes Induced by High-Intensity Ultrasound Application on Orange Peel Drying. Food and Bioprocess Technology, 5(6), 2256-2265. doi:10.1007/s11947-011-0645-0Puig, A., Perez-Munuera, I., Carcel, J. A., Hernando, I., & Garcia-Perez, J. V. (2012). Moisture loss kinetics and microstructural changes in eggplant (Solanum melongena L.) during conventional and ultrasonically assisted convective drying. Food and Bioproducts Processing, 90(4), 624-632. doi:10.1016/j.fbp.2012.07.001Cruz, L., Clemente, G., Mulet, A., Ahmad-Qasem, M. H., Barrajón-Catalán, E., & García-Pérez, J. V. (2016). Air-borne ultrasonic application in the drying of grape skin: Kinetic and quality considerations. Journal of Food Engineering, 168, 251-258. doi:10.1016/j.jfoodeng.2015.08.001Do Nascimento, E. M. G. C., Mulet, A., Ascheri, J. L. R., de Carvalho, C. W. P., & Cárcel, J. A. (2016). Effects of high-intensity ultrasound on drying kinetics and antioxidant properties of passion fruit peel. Journal of Food Engineering, 170, 108-118. doi:10.1016/j.jfoodeng.2015.09.015Szadzińska, J., Kowalski, S. J., & Stasiak, M. (2016). Microwave and ultrasound enhancement of convective drying of strawberries: Experimental and modeling efficiency. International Journal of Heat and Mass Transfer, 103, 1065-1074. doi:10.1016/j.ijheatmasstransfer.2016.08.001Szadzińska, J., Łechtańska, J., Kowalski, S. J., & Stasiak, M. (2017). The effect of high power airborne ultrasound and microwaves on convective drying effectiveness and quality of green pepper. Ultrasonics Sonochemistry, 34, 531-539. doi:10.1016/j.ultsonch.2016.06.030Fonteles, T. V., Leite, A. K. F., Silva, A. R. A., Carneiro, A. P. G., Miguel, E. de C., Cavada, B. S., … Rodrigues, S. (2016). Ultrasound processing to enhance drying of cashew apple bagasse puree: Influence on antioxidant properties and in vitro bioaccessibility of bioactive compounds. Ultrasonics Sonochemistry, 31, 237-249. doi:10.1016/j.ultsonch.2016.01.003Boukouvalas, C. J., Krokida, M. K., Maroulis, Z. B., & Marinos-Kouris, D. (2006). Density and Porosity: Literature Data Compilation for Foodstuffs. International Journal of Food Properties, 9(4), 715-746. doi:10.1080/10942910600575690Ozuna, C., Cárcel, J. A., Walde, P. M., & Garcia-Perez, J. V. (2014). Low-temperature drying of salted cod (Gadus morhua) assisted by high power ultrasound: Kinetics and physical properties. Innovative Food Science & Emerging Technologies, 23, 146-155. doi:10.1016/j.ifset.2014.03.008Chen, Z.-G., Guo, X.-Y., & Wu, T. (2016). A novel dehydration technique for carrot slices implementing ultrasound and vacuum drying methods. Ultrasonics Sonochemistry, 30, 28-34. doi:10.1016/j.ultsonch.2015.11.026Santacatalina, J. V., Soriano, J. R., Cárcel, J. A., & Garcia-Perez, J. V. (2016). Influence of air velocity and temperature on ultrasonically assisted low temperature drying of eggplant. Food and Bioproducts Processing, 100, 282-291. doi:10.1016/j.fbp.2016.07.010Musielak, G., Mierzwa, D., & Kroehnke, J. (2016). Food drying enhancement by ultrasound – A review. Trends in Food Science & Technology, 56, 126-141. doi:10.1016/j.tifs.2016.08.003Kowalski, S. J., & Szadzińska, J. (2014). Convective-intermittent drying of cherries preceded by ultrasonic assisted osmotic dehydration. Chemical Engineering and Processing: Process Intensification, 82, 65-70. doi:10.1016/j.cep.2014.05.006Pérez-Jiménez, J., Díaz-Rubio, M. E., & Saura-Calixto, F. (2014). Non-Extractable Polyphenols in Plant Foods. Polyphenols in Plants, 203-218. doi:10.1016/b978-0-12-397934-6.00010-3Ainsworth, E. A., & Gillespie, K. M. (2007). Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nature Protocols, 2(4), 875-877. doi:10.1038/nprot.2007.102Gamboa-Santos, J., Soria, A. C., Villamiel, M., & Montilla, A.

    Microbubble PhoXonic resonators: Chaos transition and transfer

    Get PDF
    We report the activation of optomechanical chaotic oscillations in microbubble resonators (MBRs) through a blue-side excitation of its optical resonances. We confirm the sequence of quasi-periodical oscillation, spectral continuum and aperiodic motion; as well as the transition to chaos without external feedback or modulation of the laser source. In particular, quasi periodic transitions and a spectral continuum are reported for MBRs with diameters up to 600 μm, whereas only an abrupt transition into a spectral con- tinuum is observed for larger microbubbles

    Nonlinear optical effects and optomechanical oscillations in hollow Whispering Gallery Mode microresonators: coexistence, suppression, amplification and route to chaos

    Get PDF
    Whispering Gallery Mode (WGM) hollow microcavities turn out to be the site of an extremely rich and complex phenomenological scenario when pumped with a continuous-wave laser source. The coexistence of numerous non-linear and optomechanical effects have been reviewed in this paper. In our previous works we have investigated and described non-linear emissions as the stimulated Brillouin and Raman scattering, the degenerated and non-degenerated Kerr effects, such as four wave mixing (FWM). These effects happened concomitantly to parametric optomechanical oscillations which are the consequence of the radiation pressure. We have confirmed the regenerative oscillation of acoustic eigenmodes of the cavity leading to parametric instabilities and the activation of optomechanical chaotic oscillations. Finally, we have demonstrated that the blue-side excitation of WGM resonances lead to the chaos transition with a spectral evolution depending on the cavity size

    KM3NeT broadcast optical data transport system

    Get PDF
    [EN] The optical data transport system of the KM3NeT neutrino telescope at the bottom of the Mediterranean Sea will provide more than 6000 optical modules in the detector arrays with a point-to-point optical connection to the control stations onshore. The ARCA and ORCA detectors of KM3NeT are being installed at a depth of about 3500 m and 2500 m, respectively and their distance to the control stations is about 100 kilometers and 40 kilometers. In particular, the two detectors are optimised for the detection of cosmic neutrinos with energies above about 1 TeV (ARCA) and for the detection of atmospheric neutrinos with energies in the range 1 GeV-1 TeV (ORCA). The expected maximum data rate is 200 Mbps per optical module. The implemented optical data transport system matches the layouts of the networks of electro-optical cables and junction boxes in the deep sea. For efficient use of the fibres in the system the technology of Dense Wavelength Division Multiplexing is applied. The performance of the optical system in terms of measured bit error rates, optical budget are presented. The next steps in the implementation of the system are also discussed.The authors acknowledge the Foton Institute for providing all the reports concerning the cited measure-ments performed at the their facilities in the years 2014-2015 during the Phase I architecture design. The authors acknowledge the financial support of the funding agencies: Agence Nationale de la Recherche (contract ANR-15-CE31-0020) , Centre National de la Recherche Scientifique (CNRS) , Commission Europenne (FEDER fund and Marie Curie Program) , Institut Universitaire de France (IUF) , LabEx UnivEarthS (ANR-10-LABX-0023 and ANR-18-IDEX-0001) , Paris Ile-de-France Region, France; Deutsche Forschungsgemeinschaft (DFG), Germany; The General Secretariat of Research and Innovation (GSRI), Greece Istituto Nazionale di Fisica Nucleare (INFN) , Ministero dell'Universite della Ricerca (MIUR), PRIN 2017 program (Grant NAT-NET 2017W4HA7S) Italy; Ministry of Higher Education, Scientific Research and Innovation, Morocco, and the Arab Fund for Economic and Social Development, Kuwait; Nederlandse organisatie voor Wetenschappelijk Onderzoek (NWO), the Netherlands; The National Science Centre, Poland (2021/41/N/ST2/01177) ; National Authority for Scientific Research (ANCS), Romania; Ministerio de Ciencia, Innovacion, Investigacion y Universidades (MCIU) : Programa Estatal de Generacion de Conocimiento (refs. PGC2018-096663-B-C41,-A-C42,-B-C43,-B-C44 and refs. PID2021-124591NB-C41,-C42,-C43) (MCIU/FEDER, Generalitat Valenciana: Prometeo (PROMETEO/2020/019) , Grisolia (refs. GRISOLIA/2018/119,/2021/192) and GenT (refs. CIDEGENT/2018/034,/2019/043,/2020/049,/2021/023) programs, Junta de Andalucia (ref. A-FQM-053-UGR18) , La Caixa Foundation (ref. LCF/BQ/IN17/11620019) , EU: MSC program (ref. 101025085) , Spain; Maria Zambrano program within the framework of grants for retaining in the Spanish university system (Spanish Ministry of Universities, funded by the European Union, NextGenerationEU) .Aiello, S.; Albert, A.; Alves Garre, S.; Ambrosone, A.; Aly, Z.; Ameli, F.; Anghinolfi, M.... (2023). KM3NeT broadcast optical data transport system. Journal of Instrumentation. 18(2). https://doi.org/10.1088/1748-0221/18/02/T0200118

    Influence of phenological barriers and habitat differentiation on the population genetic structure of the balearic endemic Rhamnus ludovici-salvatoris Chodat and R. alaternus L

    Full text link
    [EN] Rhamnus ludovici-salvatoris, endemic to the Gymnesian Islands, coexists with the related and widespread R. alaternus in Mallorca and Menorca. In both species, the population genetic structure using RAPD, and flowering during a 3-year period to check for possible phenological barriers, were analyzed. Rhamnus ludovici-salvatoris showed lower genetic diversity and stronger population structure than R. alaternus, the Cabrera population being less diverse and the most differentiated. Rhamnus ludovici-salvatoris flowered one month later, although flowering of both species coincided sporadically. These congeners seem to have diverged through isolation by time and differentiation in habitat. The population genetic structure of R. ludovici-salvatoris could mainly be due to the existence of small populations on the one hand, and a gene flow caused by rare hybridization events on the other, which may also explain the presence of morphologically intermediate individuals in Menorca. The conservation of R. ludovici-salvatoris populations may include population reinforcements and other in situ interventions.Ferriol Molina, M.; Llorens García, L.; Gil, L.; Boira Tortajada, H. (2009). Influence of phenological barriers and habitat differentiation on the population genetic structure of the balearic endemic Rhamnus ludovici-salvatoris Chodat and R. alaternus L. Plant Systematics and Evolution. 277(1-2):105-116. doi:10.1007/s00606-008-0110-3S1051162771-2Affre L, Thompson JD, Debussche M (1997) Genetic structure of continental and island populations of the Mediterranean endemic Cyclamen balearicum (Primulaceae). Amer J Bot 84(4): 437–451BOIB (2005) Decreto 75/2005. BOIB 106: 29–32Bolmgren K, Oxelman B (2004) Generic limits in Rhamnus L. s.l. (Rhamnaceae) inferred from nuclear and chloroplast DNA sequence phylogenies. Taxon 53(2):383–390Bolòs O, Molinier R (1958) Recherches phytosociologiques dans l’île de Majorque. Collectanea Botanica 34:699–865Cardona MA (1979) Consideracions sobre l’endemisme i l’origen de la flora de las Illes Balears. Butlletí del Institut Catalá de Historia Natural 44 (Sec. Bot. 3):7–15Cardona MA, Contandriopoulos J (1979) Endemism and evolution in the islands of the Western Mediterranean. In: Bramwell D (ed) Plants and islands. Academic Press, London, pp 133–169Chodat L (1924) Contributions à la Géo-Botanique de Majorque. PhD Thesis, Université de Genève—Institut de Botanique, SwitzerlandCollins D, Mill RR, Moller M (2003) Species separation of Taxus baccata, T. canadensis, and T. cuspidata (Taxaceae) and origins of their reputed hybrids inferred from RAPD and cpDNA data. Amer J Bot 90(2):175–182Cronk QCB (1997) Islands: stability, diversity, conservation. Biodivers Conserv 6(3):477–493Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15Ducarme V, Wesselingh RA (2005) Detecting hybridization in mixed populations of Rhinanthus minor and Rhinanthus angustifolius. Folia Geobot 40(2/3):151–161Englishloeb GM, Karban R (1992) Consequences of variation in flowering phenology for seed head herbivory and reproductive success in Erigeron glaucus (Compositae). Oecologia 89:588–595Gautier F, Caluzon G, Suk JP, Violanti D (1994) Age et durée de la crise de salinité Messinienne. Comptes Rendus de l’Académie des Sciences de Paris 318:1103–1109Gerard PR, Fernandez-Manjarres JF, Frascaria-Lacoste N (2006) Temporal cline in a hybrid zone population between Fraxinus excelsior L. and Fraxinus angustifolia Vahl. Molec Ecol 15:3655–3667Gil L, Llorens L, Tébar FJ, Costa M (1995) La vegetación de la isla de Cabrera. In: Guía de la excursión geobotánica de las XV Jornadas de Fitosociología. Datos sobre la vegetación de Cabrera. Palma de Mallorca: Universitat de les Illes Balears, pp 51–77Gulías J, Flexas J, Abadía A, Medrano H (2002) Photosynthetic responses to water deficit in six Mediterranean sclerophyll species: possible factors explaining the declining distribution of Rhamnus ludovici-salvatoris, and endemic Balearic species. Tree Physiol 22:687–697Gulías J, Traveset A, Riera N, Mus M (2004) Critical stages in the recruitment process of Rhamnus alaternus L. Ann Bot 93:723–731Gustafsson S, Sjögren-Gulve P (2002) Genetic diversity in the rare orchid, Gymnadenia odoratissima and a comparison with the more common congener, G. conopsea. Conserv Genet 3:225–234Gustafsson S (2003) Population genetic analyses in the orchid genus Gymnadenia—a conservation genetic perspective. PhD Thesis, Uppsala University, SwedenGustafsson S, Lönn M (2003) Genetic differentiation and habitat preference of flowering-time variants within Gymnadenia conopsea. Heredity 91:284–292Harris W (1996) Genecological aspects of flowering patterns of populations of Kunzea ericoides and K. sinclairii (Myrtaceae). New Zealand J Bot 34:333–354Hendry AP, Dray T (2005) Population structure attributable to reproductive time: isolation by time and adaptation by time. Molec Ecol 14:901–916Hosokawa K, Minami M, Kawahara K, Nakamura I, Shibata T (2000) Discrimination among three species of medicinal Scutellaria plants using RAPD markers. Pl Med 66:270–272Huang Z, Liu L, Zhou T, Ju B (2005) Effects of environmental factors on the population genetic structure in chukar partridge (Alectoris chukar). J Arid Environ 62:427–434Juan A, Crespo MB, Cowan RS, Lexer C, Fay F (2004) Patterns of variability and gene flow in Medicago citrina, an endangered endemic of islands in the western Mediterranean, as revealed by amplified fragment length polymorphism (AFLP). Molec Ecol 13:2679–2690Krijgsman W, Hilgen FJ, Raffi I, Sierro FJ, Wilson DS (1999) Chronology, causes and progression of the Messinian salinity crisis. Nature 400:652–655Lamont BB, He T, Enright NJ, Krauss SL, Miller BP (2003) Anthropogenic disturbance promotes hybridization between Banksia species by altering their biology. J Evol Biol 16:551–557Lennartsson T (1997) Seasonal differentiation—a conservative reproductive barrier in two grassland Gentianella (Gentianaceae) species. Pl Syst Evol 208:45–69Martinez-Solis I, Iranzo J, Estrelles E, Ibars AM (1993) Leaf domatia in the section Alaternus (Miller) DC. of the genus Rhamnus (Rhamnaceae). Bot J Linn Soc 112:311–318McIntosh ME (2002) Flowering phenology and reproductive output in two sister species of Ferocactus (Cactaceae). Pl Ecol 159:1–13Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323Nei M (1978) Estimation of average heterozigosity and genetic distance from a small number of individuals. Genetics 89:583–590Nei M, Li W (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 79:5269–5273Nybom H, Bartish IV (2000) Effects of life history traits and sampling strategies on genetic diversity estimates obtained with RAPD markers in plants. Perspect Pl Ecol Evol Syst 3(2):93–114Oostermeijer JGB, Luijten SH, Ellis-Adam AC, den Nijs JCM (2002) Future prospects for the rare, late-flowering Gentianella germanica and Gentianopsis ciliata in Dutch nutrient-poor calcareous grasslands. Biol Conserv 104:339–350Pease CM, Lande R, Bull JJ (1989) A model of population growth, dispersal and evolution in a changing environment. Ecology 70(6):1657–1664Perron M, Gordon AG, Bousquet J (1995) Species-specific RAPD fingerprints for the closely related Picea mariana and P. rubens. Theor Appl Genet 91:142–149Pierce S, Ceriani RM, Villa M, Cerabolini B (2006) Quantifying relative extinction risks and targeting intervention for the orchid flora of a natural park in the European prealps. Conserv Biol 20(6):1804–1810Richardson JE, Fay MF, Cronk QCB, Bowman D, Chase MW (2000) A phylogenetic analysis of Rhamnaceae using rbcL and trnL-F plastid DNA sequences. Amer J Bot 87(9):1309–1324Roselló JA, Sáez L (2000) Index Balearicum: an annotated check-list of the vascular plants described from the Balearic Islands. Collect Bot 25(1):3–203Roselló JA, Cebrián MC, Mayol M (2002) Testing taxonomic and biogeographical relationships in a narrow mediterranean endemic complex (Hippocrepis balearica) using RAPD markers. Ann Bot 89:321–327Sales E, Nebauer SG, Mus M, Segura J (2001) Population genetic study in the Balearic plant species Digitalis minor (Scrophulariaceae) using RAPD markers. Amer J Bot 88(10):1750–1759Sherwin WB, Moritz C (2000) Managing and monitoring genetic erosion. In: Young AG, Clarke GM (eds) Genetics, demography and viability of fragmented populations. Cambridge University Press, Cambridge, pp 9–34Sneath PHA, Sokal RR (1973) Numerical taxonomy. Freeman and Co., San FranciscoTraveset A, Gulías J, Riera N, Mus M (2003) Transition probabilities from pollination to establishment in a rare dioecious shrub species (Rhamnus ludovici-salvatoris) in two habitats. J Ecol 91:427–437Tutin TG, Heywood VH, Burges NA, Valentine DH, Walters SM, Webb DA (eds) (2001) Flora Europaea, vol 2. Rosaceae to Umbelliferae. Cambridge University Press, CambridgeWright S (1931) Evolution in Mendelian populations. Genetics 16:97–159Zimmerman M (1980a) Reproduction in Polemonium: pre-dispersal seed predation. Ecology 61:502–506Zimmerman M (1980b) Reproduction in Polemonium: competition for pollinators. Ecology 61:497–50

    EPDR1 up-regulation in human colorectal cancer is related to staging and favours cell proliferation and invasiveness

    Get PDF
    The finding of novel molecular markers for prediction or prognosis of invasiveness in colorectal cancer (CRC) constitutes an appealing challenge. Here we show the up-regulation of EPDR1 in a prospective cohort of 101 CRC patients, in a cDNA array of 43 patients and in in silico analyses. EPDR1 encodes a protein related to ependymins, a family of glycoproteins involved in intercellular contacts. A thorough statistical model allowed us to conclude that the gene is significantly up-regulated in tumour tissues when compared with normal mucosa. These results agree with those obtained by the analysis of three publicly available databases. EPDR1 up-regulation correlates with the TNM staging parameters, especially T and M. Studies with CRC cell lines revealed that the methylation of a CpG island controls EPDR1 expression. siRNA knocking-down and overexpression of the gene following transient plasmid transfection, showed that EPDR1 favours cell proliferation, migration, invasiveness and adhesion to type I collagen fibres, suggesting a role in epithelial to mesenchymal transition. Both statistical and functional analysis correlated EPDR1 overexpression with invasiveness and dissemination of tumour cells, supporting the inclusion of EPDR1 in panels of genes used to improve molecular subtyping of CRC. Eventually, EPDR1 may be an actionable target.Fil: Gimeno Valiente, F.. No especifíca;Fil: Riffo Campos, Á. L.. Universidad de La Frontera; ChileFil: Ayala, G.. Universidad de Valencia; EspañaFil: Tarazona, N.. Universidad de Valencia; EspañaFil: Gambardella, V.. Universidad de Valencia; EspañaFil: Rodríguez, Fernanda Mariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Ciencias Veterinarias del Litoral. Universidad Nacional del Litoral. Facultad de Ciencias Veterinarias. Instituto de Ciencias Veterinarias del Litoral; ArgentinaFil: Huerta, M.. Universidad de Valencia; EspañaFil: Martínez-Ciarpaglini, C.. Universidad de Valencia; EspañaFil: Montón Bueno, J.. Universidad de Valencia; EspañaFil: Roselló, S.. Universidad de Valencia; EspañaFil: Roda, D.. Universidad de Valencia; EspañaFil: Cervantes, A.. Universidad de Valencia; EspañaFil: Franco, L.. Universidad de Valencia; EspañaFil: López Rodas, G.. Universidad de Valencia; EspañaFil: Castillo, J.. Universidad de Valencia; Españ

    Estudio Diagnóstico sobre la Biodiversidad Cultivada y la Agricultura Ecológica en Andalucía, Asturias, Comunidad Valenciana, Galicia y Región de Murcia

    Get PDF
    El proyecto Agricultura Ecológica, Fuente de Empleo Rural "AEFER", consiste en la realización de una serie de acciones encaminadas a promover el establecimiento y la conversión de agricultores y sus empresas a la producción y transformación agraria ecológica. El proyecto AEFER está promovido por la Sociedad Española de Agricultura Ecológica SEAE, cofinanciado por el Fondo Social Europeo y enmarcado en el Programa Empleaverde 2007-2013 de la Fundación Biodiversidad. Este proyecto tiene como objetivo general contribuir a una mayor sostenibilidad (ecológica, económica y social) de los sistemas agrarios, mejorando la calidad de vida de los agricultores, promoviendo la conversión de sus tierras a la agricultura ecológica, diversificando y ampliando las actividades agrarias. El proyecto se desarrolla en 5 Comunidades Autónomas: Andalucía, Asturias, Comunidad Valenciana, Galicia y Región de Murcia. Para cumplir con estos objetivos se contemplan una serie de acciones, entre las que se incluye el presente “Estudio Diagnostico sobre Biodiversidad Cultivada y Agricultura Ecológica” elaborado por la Red de Semillas “Resembrando e Intercambiando”. La Red de Semillas, es una organización descentralizada de carácter técnico, social y político, que ha trabajado durante los últimos 10 años en reunir esfuerzos entorno al uso y conservación de la biodiversidad agrícola en el contexto local, estatal e internacional, y que tiene como objetivo primordial el facilitar y promover el uso, producción, mantenimiento y conservación de la biodiversidad agrícola en las fincas de los agricultores y en la alimentación de los consumidores. Este estudio ha posibilitado la puesta en marcha diferentes iniciativas que, a modo de proyectos piloto, puedan permitir en el futuro evaluar la situación de la utilización de los recursos genéticos agrícolas. Se han incluido tanto experiencias de campo con agricultores tradicionales y/o ecológicos como recursos conservados en los bancos de semillas institucionales
    corecore