107 research outputs found

    Development of a hard X-ray delay line for X-ray photon correlation spectroscopy and jitter-free pump–probe experiments at X-ray free-electron laser sources

    Get PDF
    A prototype device capable of splitting an X-ray pulse into two adjustable fractions, delaying one of them with the aim of performing split pulse X-ray photon correlation spectroscopy and pump–probe type studies was designed and manufactured. Time delays up to 2.95 ns have been demonstrated. The achieved contrast values of 56% indicate a feasibility of performing coherence-based experiments with the delay line

    Enabling time-resolved 2D spatial-coherence measurements using the Fourier-analysis method with an integrated curved-grating beam monitor

    Get PDF
    Direct 2D spatial-coherence measurements are increasingly gaining importance at synchrotron beamlines, especially due to present and future upgrades of synchrotron facilities to diffraction-limited storage rings. We present a method to determine the 2D spatial coherence of synchrotron radiation in a direct and particularly simple way by using the Fourier-analysis method in conjunction with curved gratings. Direct photon-beam monitoring provided by a curved grating circumvents the otherwise necessary separate determination of the illuminating intensity distribution required for the Fourier-analysis method. Hence, combining these two methods allows for time-resolved spatial-coherence measurements. As a consequence, spatial-coherence degradation effects caused by beamline optics vibrations, which is one of the key issues of state-of-the-art X-ray imaging and scattering beamlines, can be identified and analyzed. © 2020 Optical Society of America

    THz-Driven Coherent Magnetization Dynamics in a Labyrinth Domain State

    Full text link
    Terahertz (THz) light pulses can be used for an ultrafast coherent manipulation of the magnetization. Driving the magnetization at THz frequencies is currently the fastest way of writing magnetic information in ferromagnets. Using time-resolved resonant magnetic scattering, we gain new insights to the THz-driven coherent magnetization dynamics on nanometer length scales. We observe ultrafast demagnetization and coherent magnetization oscillations that are governed by a time-dependent damping. This damping is determined by the interplay of lattice heating and magnetic anisotropy reduction revealing an upper speed limit for THz-induced magnetization switching. We show that in the presence of nanometer-sized magnetic domains, the ultrafast magnetization oscillations are associated with a correlated beating of the domain walls. The overall domain structure thereby remains largely unaffected which highlights the applicability of THz-induced switching on the nanoscale.Comment: 10 pages, 8 figures and 54 reference

    The X-ray Correlation Spectroscopy instrument at the Linac Coherent Light Source

    Get PDF
    The X-ray Correlation Spectroscopy instrument is dedicated to the study of dynamics in condensed matter systems using the unique coherence properties of free-electron lasers. It covers a photon energy range of 4–25 keV. The intrinsic temporal characteristics of the Linac Coherent Light Source, in particular the 120 Hz repetition rate, allow for the investigation of slow dynamics (milli-seconds) by means of X-ray photon correlation spectroscopy. Double-pulse schemes could probe dynamics on the picosecond timescale. A description of theinstrument capabilities and recent achievements is presented

    Coherent X-ray Scattering Reveals Nanoscale Fluctuations in Hydrated Proteins

    Full text link
    Hydrated proteins undergo a transition in the deeply supercooled regime, which is attributed to rapid changes in hydration water and protein structural dynamics. Here, we investigate the nanoscale stress relaxation in hydrated lysozyme proteins stimulated and probed by X-ray Photon Correlation Spectroscopy (XPCS). This approach allows us to access the nanoscale dynamic response in the deeply supercooled regime (T = 180 K) which is typically not accessible through equilibrium methods. The relaxation time constants exhibit Arrhenius temperature dependence upon cooling with a minimum in the Kohlrausch-Williams-Watts exponent at T = 227 K. The observed minimum is attributed to an increase in dynamical heterogeneity, which coincides with enhanced fluctuations observed in the two-time correlation functions and a maximum in the dynamic susceptibility quantified by the normalised variance χT\chi_T. Our study provides new insights into X-ray stimulated stress relaxation and the underlying mechanisms behind spatio-temporal fluctuations in biological granular materials

    Megahertz-rate ultrafast X-ray scattering and holographic imaging at the European XFEL

    Get PDF
    The advent of X-ray free-electron lasers (XFELs) has revolutionized fundamental science, from atomic to condensed matter physics, from chemistry to biology, giving researchers access to X-rays with unprecedented brightness, coherence and pulse duration. All XFEL facilities built until recently provided X-ray pulses at a relatively low repetition rate, with limited data statistics. Here, results from the first megahertz-repetition-rate X-ray scattering experiments at the Spectroscopy and Coherent Scattering (SCS) instrument of the European XFEL are presented. The experimental capabilities that the SCS instrument offers, resulting from the operation at megahertz repetition rates and the availability of the novel DSSC 2D imaging detector, are illustrated. Time-resolved magnetic X-ray scattering and holographic imaging experiments in solid state samples were chosen as representative, providing an ideal test-bed for operation at megahertz rates. Our results are relevant and applicable to any other non-destructive XFEL experiments in the soft X-ray range
    • …
    corecore