2,412 research outputs found

    Balancing Selection at the Tomato RCR3 Guardee Gene Family Maintains Variation in Strength of Pathogen Defense

    Get PDF
    Coevolution between hosts and pathogens is thought to occur between interacting molecules of both species. This results in the maintenance of genetic diversity at pathogen antigens (or so-called effectors) and host resistance genes such as the major histocompatibility complex (MHC) in mammals or resistance (R) genes in plants. In plant-pathogen interactions, the current paradigm posits that a specific defense response is activated upon recognition of pathogen effectors via interaction with their corresponding R proteins. According to the''Guard-Hypothesis,'' R proteins (the ``guards'') can sense modification of target molecules in the host (the ``guardees'') by pathogen effectors and subsequently trigger the defense response. Multiple studies have reported high genetic diversity at R genes maintained by balancing selection. In contrast, little is known about the evolutionary mechanisms shaping the guardee, which may be subject to contrasting evolutionary forces. Here we show that the evolution of the guardee RCR3 is characterized by gene duplication, frequent gene conversion, and balancing selection in the wild tomato species Solanum peruvianum. Investigating the functional characteristics of 54 natural variants through in vitro and in planta assays, we detected differences in recognition of the pathogen effector through interaction with the guardee, as well as substantial variation in the strength of the defense response. This variation is maintained by balancing selection at each copy of the RCR3 gene. Our analyses pinpoint three amino acid polymorphisms with key functional consequences for the coevolution between the guardee (RCR3) and its guard (Cf-2). We conclude that, in addition to coevolution at the ``guardee-effector'' interface for pathogen recognition, natural selection acts on the ``guard-guardee'' interface. Guardee evolution may be governed by a counterbalance between improved activation in the presence and prevention of auto-immune responses in the absence of the corresponding pathogen

    Time spent outdoors in childhood is associated with reduced risk of myopia as an adult

    Get PDF
    Myopia (near-sightedness) is an important public health issue. Spending more time outdoors can prevent myopia but the long-term association between this exposure and myopia has not been well characterised. We investigated the relationship between time spent outdoors in childhood, adolescence and young adulthood and risk of myopia in young adulthood. The Kidskin Young Adult Myopia Study (KYAMS) was a follow-up of the Kidskin Study, a sun exposure-intervention study of 1776 children aged 6–12 years. Myopia status was assessed in 303 (17.6%) KYAMS participants (aged 25–30 years) and several subjective and objective measures of time spent outdoors were collected in childhood (8–12 years) and adulthood. Index measures of total, childhood and recent time spent outdoors were developed using confirmatory factor analysis. Logistic regression was used to assess the association between a 0.1-unit change in the time outdoor indices and risk of myopia after adjusting for sex, education, outdoor occupation, parental myopia, parental education, ancestry and Kidskin Study intervention group. Spending more time outdoors during childhood was associated with reduced risk of myopia in young adulthood (multivariable odds ratio [OR] 0.82, 95% confidence interval [CI] 0.69, 0.98). Spending more time outdoors in later adolescence and young adulthood was associated with reduced risk of late-onset myopia (≥ 15 years of age, multivariable OR 0.79, 95% CI 0.64, 0.98). Spending more time outdoors in both childhood and adolescence was associated with less myopia in young adulthood

    Virtual Reality Applications in Rehabilitation

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-39510-4_1One of the most valuable applications of virtual reality (VR) is in the domain of rehabilitation. After brain injuries or diseases, many patients suffer from impaired physical and/or cognitive capabilities, such as difficulties in moving arms or remembering names. Over the past two decades, VR has been tested and examined as a technology to assist patients’ recovery and rehabilitation, both physical and cognitive. The increasing prevalence of low-cost VR devices brings new opportunities, allowing VR to be used in practice. Using VR devices such as head-mounted displays (HMDs), special virtual scenes can be designed to assist patients in the process of re-training their brain and reorganizing their functions and abilities. However, such VR interfaces and applications must be comprehensively tested and examined for their effectiveness and potential side effects. This paper presents a review of related literature and discusses the new opportunities and challenges. Most of existing studies examined VR as an assessment method rather than a training/exercise method. Nevertheless, promising cases and positive preliminary results have been shown. Considering the increasing need for self-administered, home-based, and personalized rehabilitation, VR rehabilitation is potentially an important approach. This area requires more studies and research effort

    Negative phenotypic and genetic associations between copulation duration and longevity in male seed beetles

    Get PDF
    Reproduction can be costly and is predicted to trade-off against other characters. However, while these trade-offs are well documented for females, there has been less focus on aspects of male reproduction. Furthermore, those studies that have looked at males typically only investigate phenotypic associations, with the underlying genetics often ignored. Here, we report on phenotypic and genetic trade-offs in male reproductive effort in the seed beetle, Callosobruchus maculatus. We find that the duration of a male's first copulation is negatively associated with subsequent male survival, phenotypically and genetically. Our results are consistent with life-history theory and suggest that like females, males trade-off reproductive effort against longevity

    Predicting the Impact of Climate Change on Threatened Species in UK Waters

    Get PDF
    Global climate change is affecting the distribution of marine species and is thought to represent a threat to biodiversity. Previous studies project expansion of species range for some species and local extinction elsewhere under climate change. Such range shifts raise concern for species whose long-term persistence is already threatened by other human disturbances such as fishing. However, few studies have attempted to assess the effects of future climate change on threatened vertebrate marine species using a multi-model approach. There has also been a recent surge of interest in climate change impacts on protected areas. This study applies three species distribution models and two sets of climate model projections to explore the potential impacts of climate change on marine species by 2050. A set of species in the North Sea, including seven threatened and ten major commercial species were used as a case study. Changes in habitat suitability in selected candidate protected areas around the UK under future climatic scenarios were assessed for these species. Moreover, change in the degree of overlap between commercial and threatened species ranges was calculated as a proxy of the potential threat posed by overfishing through bycatch. The ensemble projections suggest northward shifts in species at an average rate of 27 km per decade, resulting in small average changes in range overlap between threatened and commercially exploited species. Furthermore, the adverse consequences of climate change on the habitat suitability of protected areas were projected to be small. Although the models show large variation in the predicted consequences of climate change, the multi-model approach helps identify the potential risk of increased exposure to human stressors of critically endangered species such as common skate (Dipturus batis) and angelshark (Squatina squatina)

    Microbiologic characteristics and predictors of mortality in bloodstream infections in intensive care unit patients: A 1-year, large, prospective surveillance study in 5 Italian hospitals

    Get PDF
    Bloodstream infections (BSIs) from multidrug-resistant (MDR) bacteria cause morbidity and mortality in intensive care unit (ICU) patients worldwide. This study investigated the incidence of BSIs in 5 adult general ICUs in Rome, Italy, and evaluated the mortality rate and risk factors associated with these infections
    corecore