441 research outputs found
The Nuclear Outflow in NGC 2110
We present a HST/STIS spectroscopic and optical/radio imaging study of the
Seyfert NGC 2110 aiming to measure the dynamics and understand the nature of
the nuclear outflow in the galaxy. Previous HST studies have revealed the
presence of a linear structure in the Narrow-Line Region (NLR) aligned with the
radio jet. We show that this structure is strongly accelerated, probably by the
jet, but is unlikely to be entrained in the jet flow. The ionisation properties
of this structure are consistent with photoionisation of dusty, dense gas by
the active nucleus. We present a plausible geometrical model for the NLR,
bringing together various components of the nuclear environment of the galaxy.
We highlight the importance of the circum-nuclear disc in determining the
appearance of the emission line gas and the morphology of the jet. From the
dynamics of the emission line gas, we place constraints on the accelerating
mechanism of the outflow and discuss the relative importance of radio source
synchrotron pressure, radio jet ram pressure and nuclear radiation pressure in
accelerating the gas. While all three mechanisms can account for the energetics
of the emission line gas, gravitational arguments support radio jet ram
pressure as the most likely source of the outflow.Comment: 15 pages, 7 figures; accepted to MNRA
Ionization Mechanisms in Jet-Dominated Seyferts: A Detailed Case Study
For the past 10 years there has been an active debate over whether fast
shocks play an important role in ionizing emission line regions in Seyfert
galaxies. To investigate this claim, we have studied the Seyfert 2 galaxy Mkn
78, using HST UV/optical images and spectroscopy. Since Mkn 78 provides the
archetypal jet-driven bipolar velocity field, if shocks are important anywhere
they should be important in this object. Having mapped the emission line fluxes
and velocity field, we first compare the ionization conditions to standard
photoionization and shock models. We find coherent variations of ionization
consistent with photoionization model sequences which combine optically thick
and thin gas, but are inconsistent with either autoionizing shock models or
photoionization models of just optically thick gas. Furthermore, we find
absolutely no link between the ionization of the gas and its kinematic state,
while we do find a simple decline of ionization degree with radius. We feel
this object provides the strongest case to date against the importance of shock
related ionization in Seyferts.Comment: 4 pages, 1 figure, to appear in the proceedings of IAU Symposium 222
"The Interplay among Black Holes, Stars and ISM in Galactic Nuclei", T.
Storchi Bergmann, L.C. Ho & H.R. Schmitt, ed
Experimental determination of superconducting parameters for the intermetallic perovskite superconductor ${\text {MgCNi}}_3
We have measured upper-critical-field , specific heat C, and
tunneling spectra of the intermetallic perovskite superconductor MgCNi
with a superconducting transition temperature K. Based
on these measurements and relevant theoretical relations, we have evaluated
various superconducting parameters for this material, including the
thermodynamic critical field (0), coherence length (0),
penetration depth (0), lower-critical-field (0), and
Ginsberg-Landau parameter (0). From the specific heat, we obtain the
Debye temperature 280 K. We find a jump of
=2.3 at (where is the
normal state electronic specific coefficient), which is much larger than the
weak coupling BCS value of 1.43. Our tunneling measurements revealed a gap
feature in the tunneling spectra at with 4.6, again larger than the weak-coupling value
of 3.53. Both findings indicate that MgCNi is a strong-coupling
superconductor. In addition, we observed a pronounced zero-bias conductance
peak (ZBCP) in the tunneling spectra.
We discuss the possible physical origins of the observed ZBCP, especially in
the context of the pairing symmetry of the material.Comment: 5 pages, 4 figure
The KMOS^3D Survey: design, first results, and the evolution of galaxy kinematics from 0.7<z<2.7
We present the KMOS^3D survey, a new integral field survey of over 600
galaxies at 0.7<z<2.7 using KMOS at the Very Large Telescope (VLT). The KMOS^3D
survey utilizes synergies with multi-wavelength ground and space-based surveys
to trace the evolution of spatially-resolved kinematics and star formation from
a homogeneous sample over 5 Gyrs of cosmic history. Targets, drawn from a
mass-selected parent sample from the 3D-HST survey, cover the star
formation-stellar mass () and rest-frame planes uniformly. We
describe the selection of targets, the observations, and the data reduction. In
the first year of data we detect Halpha emission in 191
Msun galaxies at z=0.7-1.1 and z=1.9-2.7. In
the current sample 83% of the resolved galaxies are rotation-dominated,
determined from a continuous velocity gradient and , implying
that the star-forming 'main sequence' (MS) is primarily composed of rotating
galaxies at both redshift regimes. When considering additional stricter
criteria, the Halpha kinematic maps indicate at least ~70% of the resolved
galaxies are disk-like systems. Our high-quality KMOS data confirm the elevated
velocity dispersions reported in previous IFS studies at z>0.7. For
rotation-dominated disks, the average intrinsic velocity dispersion decreases
by a factor of two from 50 km/s at z~2.3 to 25 km/s at z~0.9 while the
rotational velocities at the two redshifts are comparable. Combined with
existing results spanning z~0-3, disk velocity dispersions follow an
approximate (1+z) evolution that is consistent with the dependence of velocity
dispersion on gas fractions predicted by marginally-stable disk theory.Comment: 20 pages, 11 figures, 1 Appendix; Accepted to ApJ November 2
A CANDELS - 3D-HST Synergy: Resolved Star Formation Patterns at 0.7 < z < 1.5
We analyze the resolved stellar populations of 473 massive star-forming
galaxies at 0.7 < z < 1.5, with multi-wavelength broad-band imaging from
CANDELS and Halpha surface brightness profiles at the same kiloparsec
resolution from 3D-HST. Together, this unique data set sheds light on how the
assembled stellar mass is distributed within galaxies, and where new stars are
being formed. We find the Halpha morphologies to resemble more closely those
observed in the ACS I band than in the WFC3 H band, especially for the larger
systems. We next derive a novel prescription for Halpha dust corrections, which
accounts for extra extinction towards HII regions. The prescription leads to
consistent SFR estimates and reproduces the observed relation between the
Halpha/UV luminosity ratio and visual extinction, both on a pixel-by-pixel and
on a galaxy-integrated level. We find the surface density of star formation to
correlate with the surface density of assembled stellar mass for spatially
resolved regions within galaxies, akin to the so-called 'main sequence of star
formation' established on a galaxy-integrated level. Deviations from this
relation towards lower equivalent widths are found in the inner regions of
galaxies. Clumps and spiral features, on the other hand, are associated with
enhanced Halpha equivalent widths, bluer colors, and higher specific star
formation rates compared to the underlying disk. Their Halpha/UV luminosity
ratio is lower than that of the underlying disk, suggesting the ACS clump
selection preferentially picks up those regions of elevated star formation
activity that are the least obscured by dust. Our analysis emphasizes that
monochromatic studies of galaxy structure can be severely limited by
mass-to-light ratio variations due to dust and spatially inhomogeneous star
formation histories.Comment: Accepted by The Astrophysical Journal, 18 pages, 1 table, 10 figure
Air pollution and rhinitis
Rhinitis arises from either allergic or non-allergic inflammation of the nasal mucosa, characterized by the infiltration of inflammatory cells into the tissue and nasal secretions, along with structural alterations in the nasal mucosa. The pathways through which air pollution affects rhinitis may diverge from those affecting asthma. This article aims to review the effects of diverse air pollutants on the nose, the correlation of climate change and pollution, and how they aggravate the symptoms of patients with rhinitis
Quantum-Phase Transitions of Interacting Bosons and the Supersolid Phase
We investigate the properties of strongly interacting bosons in two
dimensions at zero temperature using mean-field theory, a variational Ansatz
for the ground state wave function, and Monte Carlo methods. With on-site and
short-range interactions a rich phase diagram is obtained. Apart from the
homogeneous superfluid and Mott-insulating phases, inhomogeneous charge-density
wave phases appear, that are stabilized by the finite-range interaction.
Furthermore, our analysis demonstrates the existence of a supersolid phase, in
which both long-range order (related to the charge-density wave) and
off-diagonal long-range order coexist. We also obtain the critical exponents
for the various phase transitions.Comment: RevTex, 20 pages, 10 PostScript figures include
- …