68 research outputs found

    An Intracellular Arrangement of Histoplasma capsulatum Yeast-Aggregates Generates Nuclear Damage to the Cultured Murine Alveolar Macrophages

    Get PDF
    Histoplasma capsulatum is responsible for a human systemic mycosis that primarily affects lung tissue. Macrophages are the major effector cells in humans that respond to the fungus, and the development of respiratory disease depends on the ability of Histoplasma yeast cells to survive and replicate within alveolar macrophages. Therefore, the interaction between macrophages and H. capsulatum is a decisive step in the yeast dissemination into host tissues. Although the role played by components of cell-mediated immunity in the host's defense system and the mechanisms used by the pathogen to evade the host immune response are well understood, knowledge regarding the effects induced by H. capsulatum in host cells at the nuclear level is limited. According to the present findings, H. capsulatum yeast cells display a unique architectural arrangement during the intracellular infection of cultured murine alveolar macrophages, characterized as a formation of aggregates that seem to surround the host cell nucleus, resembling a crown. This extranuclear organization of yeast-aggregates generates damage on the nucleus of the host cell, producing DNA fragmentation and inducing apoptosis, even though the yeast cells are not located inside the nucleus and do not trigger changes in nuclear proteins. The current study highlights a singular intracellular arrangement of H. capsulatum yeast near to the nucleus of infected murine alveolar macrophages that may contribute to the yeast’s persistence under intracellular conditions, since this fungal pathogen may display different strategies to prevent elimination by the host's phagocytic mechanisms

    Structural basis of GC-1 selectivity for thyroid hormone receptor isoforms

    Get PDF
    Background: Thyroid receptors, TRα and TRβ, are involved in important physiological functions such as metabolism, cholesterol level and heart activities. Whereas metabolism increase and cholesterol level lowering could be achieved by TRβ isoform activation, TRα activation affects heart rates. Therefore, β-selective thyromimetics have been developed as promising drug-candidates for treatment of obesity and elevated cholesterol level. GC-1 [3,5-dimethyl-4-(4'-hydroxy-3'-isopropylbenzyl)-phenoxy acetic acid] has ability to lower LDL cholesterol with 600- to 1400-fold more potency and approximately two- to threefold more efficacy than atorvastatin (Lipitor©) in studies in rats, mice and monkeys. Results: To investigate GC-1 specificity, we solved crystal structures and performed molecular dynamics simulations of both isoforms complexed with GC-1. Crystal structures reveal that, in TRα Arg228 is observed in multiple conformations, an effect triggered by the differences in the interactions between GC-1 and Ser277 or the corresponding asparagine (Asn331) of TRβ. The corresponding Arg282 of TRβ is observed in only one single stable conformation, interacting effectively with the ligand. Molecular dynamics support this model: our simulations show that the multiple conformations can be observed for the Arg228 in TRα, in which the ligand interacts either strongly with the ligand or with the Ser277 residue. In contrast, a single stable Arg282 conformation is observed for TRβ, in which it strongly interacts with both GC-1 and the Asn331. Conclusion: Our analysis suggests that the key factors for GC-1 selectivity are the presence of an oxyacetic acid ester oxygen and the absence of the amino group relative to T3. These results shed light into the β-selectivity of GC-1 and may assist the development of new compounds with potential as drug candidates to the treatment of hypercholesterolemia and obesity

    First Description of Natural and Experimental Conjugation between Mycobacteria Mediated by a Linear Plasmid

    Get PDF
    Background: in a previous study, we detected the presence of a Mycobacterium avium species-specific insertion sequence, IS1245, in Mycobacterium kansasii. Both species were isolated from a mixed M. avium-M. kansasii bone marrow culture from an HIV-positive patient. the transfer mechanism of this insertion sequence to M. kansasii was investigated here.Methodology/Principal Findings: A linear plasmid (pMA100) was identified in all colonies isolated from the M. avium-M. kansasii mixed culture carrying the IS1245 element. the linearity of pMA100 was confirmed. Other analyses suggested that pMA100 contained a covalently bound protein in the terminal regions, a characteristic of invertron linear replicons. Partial sequencing of pMA100 showed that it bears one intact copy of IS1245 inserted in a region rich in transposase-related sequences. These types of sequences have been described in other linear mycobacterial plasmids. Mating experiments were performed to confirm that pMA100 could be transferred in vitro from M. avium to M. kansasii. pMA100 was transferred by in vitro conjugation not only to the M. kansasii strain from the mixed culture, but also to two other unrelated M. kansasii clinical isolates, as well as to Mycobacterium bovis BCG Moreau.Conclusions/Significance: Horizontal gene transfer (HGT) is one of most important mechanisms leading to the evolution and diversity of bacteria. This work provides evidence for the first time on the natural occurrence of HGT between different species of mycobacteria. Gene transfer, mediated by a novel conjugative plasmid, was detected and experimentally reproduced.Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Cooperacion Interuniversitaria UAM-Banco Santander con America Latina (CEAL), UAM, SpainConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Universidade Federal de São Paulo, Dept Microbiol Imunol & Parasitol, Escola Paulista Med, São Paulo, BrazilLab Nacl Comp Cient, Petropolis, BrazilUniv Autonoma Madrid, Fac Med, Dept Prevent Med, Madrid, SpainInst Adolfo Lutz Registro, Nucleo TB & Micobacterioses, São Paulo, BrazilUniversidade Federal de São Paulo, Dept Microbiol Imunol & Parasitol, Escola Paulista Med, São Paulo, BrazilFAPESP: FAPESP - 06/01533-9Web of Scienc

    Determinants of intensive insulin therapeutic regimens in patients with type 1 diabetes: data from a nationwide multicenter survey in Brazil

    Get PDF
    Background: To evaluate the determinants of intensive insulin regimens (ITs) in patients with type 1 diabetes (T1D).Methods: This multicenter study was conducted between December 2008 and December 2010 in 28 public clinics in 20 Brazilian cities. Data were obtained from 3,591 patients (56.0% female, 57.1% Caucasian). Insulin regimens were classified as follows: group 1, conventional therapy (CT) (intermediate human insulin, one to two injections daily); group 2 (three or more insulin injections of intermediate plus regular human insulin); group 3 (three or more insulin injections of intermediate human insulin plus short-acting insulin analogues); group 4, basal-bolus (one or two insulin injections of long-acting plus short-acting insulin analogues or regular insulin); and group 5, basal-bolus with continuous subcutaneous insulin infusion (CSII). Groups 2 to 5 were considered IT groups.Results: We obtained complete data from 2,961 patients. Combined intermediate plus regular human insulin was the most used therapeutic regimen. CSII was used by 37 (1.2%) patients and IT by 2,669 (90.2%) patients. More patients on IT performed self-monitoring of blood glucose and were treated at the tertiary care level compared to CT patients (p < 0.001). the majority of patients from all groups had HbA1c levels above the target. Overweight or obesity was not associated with insulin regimen. Logistic regression analysis showed that economic status, age, ethnicity, and level of care were associated with IT (p < 0.001).Conclusions: Given the prevalence of intensive treatment for T1D in Brazil, more effective therapeutic strategies are needed for long term-health benefits.Farmanguinhos/Fundacao Oswaldo Cruz/National Health MinistryBrazilian Diabetes SocietyFundacao do Amparo a Pesquisa do Estado do Rio de JaneiroConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Univ Estado Rio de Janeiro, Unit Diabet, BR-20551030 Rio de Janeiro, BrazilBaurus Diabet Assoc, São Paulo, BrazilFed Univ São Paulo State, Diabet Unit, São Paulo, BrazilFed Univ Hosp Porto Alegre, Porto Alegre, BrazilUniv Hosp São Paulo, Diabet Unit, São Paulo, BrazilUniv Fed Rio de Janeiro, Rio de Janeiro, BrazilUniv Fed Ceara, Fortaleza, Ceara, BrazilSanta Casa Misericordia, Belo Horizonte, MG, BrazilSanta Casa Misericordia São Paulo, São Paulo, BrazilUniv Fed Amazonas, Manaus, Amazonas, BrazilHosp Geral de Bonsucesso, Rio de Janeiro, BrazilHosp Univ Clementino Fraga Filho IPPMG, Rio de Janeiro, BrazilUniv Hosp São Paulo, São Paulo, BrazilFac Ciencias Med Santa Casa São Paulo, São Paulo, BrazilUniv São Paulo, Inst Crianca, Hosp Clin, São Paulo, BrazilUniv São Paulo, Fac Med Ribeirao Preto, Hosp Clin, Ribeirao Preto, BrazilAmbulatorio Fac Estadual Med Sao Jose Rio Preto, Ribeirao Preto, BrazilEscola Paulista Med, Ctr Diabet, Ribeirao Preto, BrazilClin Endocrinol Santa Casa Belo Horizonte, Belo Horizonte, MG, BrazilUniv Estadual Londrina, Londrina, BrazilUniv Fed Parana, Hosp Clin, Porto Alegre, RS, BrazilInst Crianca Com Diabet Rio Grande Sul, Rio Grande Do Sul, RS, BrazilGrp Hosp Conceicao, Inst Crianca Com Diabet, Porto Alegre, RS, BrazilHosp Univ Santa Catarina, Florianopolis, SC, BrazilInst Diabet Endocrinol Joinville, Joinville, BrazilHosp Reg Taguatinga, Brasilia, DF, BrazilHosp Geral Goiania, Goiania, Go, BrazilCtr Diabet & Endocrinol Estado Bahia, Goiania, Go, BrazilUniv Fed Maranhao, Sao Luis, BrazilCtr Integrado Diabet & Hipertensao Ceara, Fortaleza, Ceara, BrazilUniv Fed Sergipe, Aracaju, BrazilHosp Univ Alcides Carneiro, Campina Grande, BrazilHosp Univ Joao de Barros Barreto, Belem, Para, BrazilFed Univ São Paulo State, Diabet Unit, São Paulo, BrazilUniv Hosp São Paulo, Diabet Unit, São Paulo, BrazilUniv Hosp São Paulo, São Paulo, BrazilEscola Paulista Med, Ctr Diabet, Ribeirao Preto, BrazilWeb of Scienc
    corecore