4 research outputs found

    Antibody responses to influenza viruses in paediatric patients and their contacts at the onset of the 2009 pandemic in Mexico

    No full text
    Introduction: On April 2009, the Mexican Ministry of Health received notification of cases of severe pneumonia mostly affecting young healthy people; this was the beginning of the first influenza pandemic of the 21st century. The nature of the immune response to the influenza A(H1N1)2009 pandemic strain in Mexico at the beginning of the pandemic outbreak has not been completely defined. We describe the serological response to the 2009 pandemic influenza virus in paediatric patients with influenza-like illness, their household contacts (HHCs), and exposed health-care workers (HCWs) at the beginning of the pandemic outbreak in Mexico City. Methodology: thirty pre-epidemic and 129 epidemic samples were collected and serum antibodies were measured against A(H1N1)2009 pandemic virus and two non-pandemic swine influenza viruses by an haemagglutination inhibition assay. Results: 91% (29/32) of the convalescence samples from confirmed patients had an antibody titre ≥ 10 (GMT 25), 63% (41/65) of the HHCs (GMT 12), 41% of HCWs (GMT 6) and 13% (4/30) of pre-epidemic samples (GMT 6) for the pandemic influenza virus. Of the 32 confirmed cases, 60% had an antibody titre ≥ 40 for the pandemic strain, 53% for the A/swine/Iowa(H1N1) virus (GMT 62) and 43% for the A/swine/Texas(H3N2) virus (GMT 66). Conclusion: The antibody response to 2009 pandemic influenza virus was widespread in convalescence samples from patients with confirmed pandemic influenza infection but the GMT was below the protective titre. There was no evidence that antibodies to the swine influenza viruses had cross-protective effect against the 2009 pandemic influenza virus.</p

    Overexpression of Grain Amaranth (Amaranthus hypochondriacus) AhERF or AhDOF Transcription Factors in Arabidopsis thaliana Increases Water Deficit- and Salt-Stress Tolerance, Respectively, via Contrasting Stress-Amelioration Mechanisms

    No full text

    Notes for genera – Ascomycota

    No full text
    Knowledge of the relationships and thus the classification of fungi, has developed rapidly with increasingly widespread use of molecular techniques, over the past 10--15 years, and continues to accelerate. Several genera have been found to be polyphyletic, and their generic concepts have subsequently been emended. New names have thus been introduced for species which are phylogenetically distinct from the type species of particular genera. The ending of the separate naming of morphs of the same species in 2011, has also caused changes in fungal generic names. In order to facilitate access to all important changes, it was desirable to compile these in a single document. The present article provides a list of generic names of Ascomycota (approximately 6500 accepted names published to the end of 2016), including those which are lichen-forming. Notes and summaries of the changes since the last edition of `Ainsworth Bisby's Dictionary of the Fungi' in 2008 are provided. The notes include the number of accepted species, classification, type species (with location of the type material), culture availability, life-styles, distribution, and selected publications that have appeared since 2008. This work is intended to provide the foundation for updating the ascomycete component of the ``Without prejudice list of generic names of Fungi'' published in 2013, which will be developed into a list of protected generic names. This will be subjected to the XIXth International Botanical Congress in Shenzhen in July 2017 agreeing to a modification in the rules relating to protected lists, and scrutiny by procedures determined by the Nomenclature Committee for Fungi (NCF). The previously invalidly published generic names Barriopsis, Collophora (as Collophorina), Cryomyces, Dematiopleospora, Heterospora (as Heterosporicola), Lithophila, Palmomyces (as Palmaria) and Saxomyces are validated, as are two previously invalid family names, Bartaliniaceae and Wiesneriomycetaceae. Four species of Lalaria, which were invalidly published are transferred to Taphrina and validated as new combinations. Catenomycopsis Tibell Constant. is reduced under Chaenothecopsis Vain., while Dichomera Cooke is reduced under Botryosphaeria Ces. De Not. (Art. 59)
    corecore