6 research outputs found

    No correlation between distorted body representations underlying tactile distance perception and position sense

    Get PDF
    Both tactile distance perception and position sense are believed to require that immediate afferent signals be referenced to a stored representation of body size and shape (the body model). For both of these abilities, recent studies have reported that the stored body representations involved are highly distorted, at least in the case of the hand, with the hand dorsum represented as wider and squatter than it actually is. Here, we investigated whether individual differences in the magnitude of these distortions are shared between tactile distance perception and position sense, as would be predicted by the hypothesis that a single distorted body model underlies both tasks. We used established tasks to measure distortions of the represented shape of the hand dorsum. Consistent with previous results, in both cases there were clear biases to overestimate distances oriented along the medio-lateral axis of the hand compared to the proximo- distal axis. Moreover, within each task there were clear split-half correlations, demonstrating that both tasks show consistent individual differences. Critically, however, there was no correlation between the magnitudes of distortion in the two tasks. This casts doubt on the proposal that a common body model underlies both tactile distance perception and position sense

    Computational and dynamic models in neuroimaging

    Get PDF
    This article reviews the substantial impact computational neuroscience has had on neuroimaging over the past years. It builds on the distinction between models of the brain as a computational machine and computational models of neuronal dynamics per se; i.e., models of brain function and biophysics. Both sorts of model borrow heavily from computational neuroscience, and both have enriched the analysis of neuroimaging data and the type of questions we address. To illustrate the role of functional models in imaging neuroscience, we focus on optimal control and decision (game) theory; the models used here provide a mechanistic account of neuronal computations and the latent (mental) states represent by the brain. In terms of biophysical modelling, we focus on dynamic causal modelling, with a special emphasis on recent advances in neural-mass models for hemodynamic and electrophysiological time series. Each example emphasises the role of generative models, which embed our hypotheses or questions, and the importance of model comparison (i.e., hypothesis testing). We will refer to this theme, when trying to contextualise recent trends in relation to each other
    corecore