56 research outputs found

    Small noncoding RNA GcvB is a novel regulator of acid resistance in Escherichia coli

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The low pH environment of the human stomach is lethal for most microorganisms; but not <it>Escherichia coli</it>, which can tolerate extreme acid stress. Acid resistance in <it>E. coli </it>is hierarchically controlled by numerous regulators among which are small noncoding RNAs (sncRNA).</p> <p>Results</p> <p>In this study, we individually deleted seventy-nine sncRNA genes from the <it>E. coli </it>K12-MG1655 chromosome, and established a single-sncRNA gene knockout library. By systematically screening the sncRNA mutant library, we show that the sncRNA GcvB is a novel regulator of acid resistance in <it>E. coli</it>. We demonstrate that GcvB enhances the ability of <it>E. coli </it>to survive low pH by upregulating the levels of the alternate sigma factor RpoS.</p> <p>Conclusion</p> <p>GcvB positively regulates acid resistance by affecting RpoS expression. These data advance our understanding of the sncRNA regulatory network involved in modulating acid resistance in <it>E. coli</it>.</p

    Functional characterization of an alkaline exonuclease and single strand annealing protein from the SXT genetic element of Vibrio cholerae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>SXT is an integrating conjugative element (ICE) originally isolated from <it>Vibrio cholerae</it>, the bacterial pathogen that causes cholera. It houses multiple antibiotic and heavy metal resistance genes on its ca. 100 kb circular double stranded DNA (dsDNA) genome, and functions as an effective vehicle for the horizontal transfer of resistance genes within susceptible bacterial populations. Here, we characterize the activities of an alkaline exonuclease (S066, SXT-Exo) and single strand annealing protein (S065, SXT-Bet) encoded on the SXT genetic element, which share significant sequence homology with Exo and Bet from bacteriophage lambda, respectively.</p> <p>Results</p> <p>SXT-Exo has the ability to degrade both linear dsDNA and single stranded DNA (ssDNA) molecules, but has no detectable endonuclease or nicking activities. Adopting a stable trimeric arrangement in solution, the exonuclease activities of SXT-Exo are optimal at pH 8.2 and essentially require Mn<sup>2+ </sup>or Mg<sup>2+ </sup>ions. Similar to lambda-Exo, SXT-Exo hydrolyzes dsDNA with 5'- to 3'-polarity in a highly processive manner, and digests DNA substrates with 5'-phosphorylated termini significantly more effectively than those lacking 5'-phosphate groups. Notably, the dsDNA exonuclease activities of both SXT-Exo and lambda-Exo are stimulated by the addition of lambda-Bet, SXT-Bet or a single strand DNA binding protein encoded on the SXT genetic element (S064, SXT-Ssb). When co-expressed in <it>E. coli </it>cells, SXT-Bet and SXT-Exo mediate homologous recombination between a PCR-generated dsDNA fragment and the chromosome, analogous to RecET and lambda-Bet/Exo.</p> <p>Conclusions</p> <p>The activities of the SXT-Exo protein are consistent with it having the ability to resect the ends of linearized dsDNA molecules, forming partially ssDNA substrates for the partnering SXT-Bet single strand annealing protein. As such, SXT-Exo and SXT-Bet may function together to repair or process SXT genetic elements within infected <it>V. cholerae </it>cells, through facilitating homologous DNA recombination events. The results presented here significantly extend our general understanding of the properties and activities of alkaline exonuclease and single strand annealing proteins of viral/bacteriophage origin, and will assist the rational development of bacterial recombineering systems.</p

    Visualizing the proteome of Escherichia coli: an efficient and versatile method for labeling chromosomal coding DNA sequences (CDSs) with fluorescent protein genes

    Get PDF
    To investigate the feasibility of conducting a genomic-scale protein labeling and localization study in Escherichia coli, a representative subset of 23 coding DNA sequences (CDSs) was selected for chromosomal tagging with one or more fluorescent protein genes (EGFP, EYFP, mRFP1, DsRed2). We used λ-Red recombination to precisely and efficiently position PCR-generated DNA targeting cassettes containing a fluorescent protein gene and an antibiotic resistance marker, at the C-termini of the CDSs of interest, creating in-frame fusions under the control of their native promoters. We incorporated cre/loxP and flpe/frt technology to enable multiple rounds of chromosomal tagging events to be performed sequentially with minimal disruption to the target locus, thus allowing sets of proteins to be co-localized within the cell. The visualization of labeled proteins in live E. coli cells using fluorescence microscopy revealed a striking variety of distributions including: membrane and nucleoid association, polar foci and diffuse cytoplasmic localization. Fifty of the fifty-two independent targeting experiments performed were successful, and 21 of the 23 selected CDSs could be fluorescently visualized. Our results show that E. coli has an organized and dynamic proteome, and demonstrate that this approach is applicable for tagging and (co-) localizing CDSs on a genome-wide scale

    Environmental adaptability and stress tolerance of Laribacter hongkongensis: a genome-wide analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Laribacter hongkongensis </it>is associated with community-acquired gastroenteritis and traveler's diarrhea and it can reside in human, fish, frogs and water. In this study, we performed an in-depth annotation of the genes in its genome related to adaptation to the various environmental niches.</p> <p>Results</p> <p><it>L. hongkongensis </it>possessed genes for DNA repair and recombination, basal transcription, alternative σ-factors and 109 putative transcription factors, allowing DNA repair and global changes in gene expression in response to different environmental stresses. For acid stress, it possessed a urease gene cassette and two <it>arc </it>gene clusters. For alkaline stress, it possessed six CDSs for transporters of the monovalent cation/proton antiporter-2 and NhaC Na<sup>+</sup>:H<sup>+ </sup>antiporter families. For heavy metals acquisition and tolerance, it possessed CDSs for iron and nickel transport and efflux pumps for other metals. For temperature stress, it possessed genes related to chaperones and chaperonins, heat shock proteins and cold shock proteins. For osmotic stress, 25 CDSs were observed, mostly related to regulators for potassium ion, proline and glutamate transport. For oxidative and UV light stress, genes for oxidant-resistant dehydratase, superoxide scavenging, hydrogen peroxide scavenging, exclusion and export of redox-cycling antibiotics, redox balancing, DNA repair, reduction of disulfide bonds, limitation of iron availability and reduction of iron-sulfur clusters are present. For starvation, it possessed phosphorus and, despite being asaccharolytic, carbon starvation-related CDSs.</p> <p>Conclusions</p> <p>The <it>L. hongkongensis </it>genome possessed a high variety of genes for adaptation to acid, alkaline, temperature, osmotic, oxidative, UV light and starvation stresses and acquisition of and tolerance to heavy metals.</p

    Environmental adaptability and stress tolerance of Laribacter hongkongensis: a genome-wide analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Laribacter hongkongensis </it>is associated with community-acquired gastroenteritis and traveler's diarrhea and it can reside in human, fish, frogs and water. In this study, we performed an in-depth annotation of the genes in its genome related to adaptation to the various environmental niches.</p> <p>Results</p> <p><it>L. hongkongensis </it>possessed genes for DNA repair and recombination, basal transcription, alternative σ-factors and 109 putative transcription factors, allowing DNA repair and global changes in gene expression in response to different environmental stresses. For acid stress, it possessed a urease gene cassette and two <it>arc </it>gene clusters. For alkaline stress, it possessed six CDSs for transporters of the monovalent cation/proton antiporter-2 and NhaC Na<sup>+</sup>:H<sup>+ </sup>antiporter families. For heavy metals acquisition and tolerance, it possessed CDSs for iron and nickel transport and efflux pumps for other metals. For temperature stress, it possessed genes related to chaperones and chaperonins, heat shock proteins and cold shock proteins. For osmotic stress, 25 CDSs were observed, mostly related to regulators for potassium ion, proline and glutamate transport. For oxidative and UV light stress, genes for oxidant-resistant dehydratase, superoxide scavenging, hydrogen peroxide scavenging, exclusion and export of redox-cycling antibiotics, redox balancing, DNA repair, reduction of disulfide bonds, limitation of iron availability and reduction of iron-sulfur clusters are present. For starvation, it possessed phosphorus and, despite being asaccharolytic, carbon starvation-related CDSs.</p> <p>Conclusions</p> <p>The <it>L. hongkongensis </it>genome possessed a high variety of genes for adaptation to acid, alkaline, temperature, osmotic, oxidative, UV light and starvation stresses and acquisition of and tolerance to heavy metals.</p

    The involvement of replication in single stranded oligonucleotide-mediated gene repair

    Get PDF
    Targeted gene repair mediated by single-stranded oligonucleotides (SSOs) has great potential for use in functional genomic studies and gene therapy. Genetic changes have been created using this approach in a number of prokaryotic and eukaryotic systems, including mouse embryonic stem cells. However, the underlying mechanisms remain to be fully established. In one of the current models, the ‘annealing-integration’ model, the SSO anneals to its target locus at the replication fork, serving as a primer for subsequent DNA synthesis mediated by the host replication machinery. Using a λ-Red recombination-based system in the bacterium Escherichia coli, we systematically examined several fundamental premises that form the mechanistic basis of this model. Our results provide direct evidence strongly suggesting that SSO-mediated gene repair is mechanistically linked to the process of DNA replication, and most likely involves a replication intermediate. These findings will help guide future experiments involving SSO-mediated gene repair in mammalian and prokaryotic cells, and suggest several mechanisms by which the efficiencies may be reliably and substantially increased

    Structural and functional insight into the mechanism of an alkaline exonuclease from Laribacter hongkongensis

    Get PDF
    Alkaline exonuclease and single-strand DNA (ssDNA) annealing proteins (SSAPs) are key components of DNA recombination and repair systems within many prokaryotes, bacteriophages and virus-like genetic elements. The recently sequenced β-proteobacterium Laribacter hongkongensis (strain HLHK9) encodes putative homologs of alkaline exonuclease (LHK-Exo) and SSAP (LHK-Bet) proteins on its 3.17 Mb genome. Here, we report the biophysical, biochemical and structural characterization of recombinant LHK-Exo protein. LHK-Exo digests linear double-stranded DNA molecules from their 5′-termini in a highly processive manner. Exonuclease activities are optimum at pH 8.2 and essentially require Mg2+ or Mn2+ ions. 5′-phosphorylated DNA substrates are preferred over dephosphorylated ones. The crystal structure of LHK-Exo was resolved to 1.9 Å, revealing a ‘doughnut-shaped’ toroidal trimeric arrangement with a central tapered channel, analogous to that of λ-exonuclease (Exo) from bacteriophage-λ. Active sites containing two bound Mg2+ ions on each of the three monomers were located in clefts exposed to this central channel. Crystal structures of LHK-Exo in complex with dAMP and ssDNA were determined to elucidate the structural basis for substrate recognition and binding. Through structure-guided mutational analysis, we discuss the roles played by various active site residues. A conserved two metal ion catalytic mechanism is proposed for this class of alkaline exonucleases

    Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome : Insights from the LUNG SAFE study

    Get PDF
    Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≥ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073publishersversionPeer reviewe

    Increasing frailty is associated with higher prevalence and reduced recognition of delirium in older hospitalised inpatients: results of a multi-centre study

    Get PDF
    Purpose: Delirium is a neuropsychiatric disorder delineated by an acute change in cognition, attention, and consciousness. It is common, particularly in older adults, but poorly recognised. Frailty is the accumulation of deficits conferring an increased risk of adverse outcomes. We set out to determine how severity of frailty, as measured using the CFS, affected delirium rates, and recognition in hospitalised older people in the United Kingdom. Methods: Adults over 65 years were included in an observational multi-centre audit across UK hospitals, two prospective rounds, and one retrospective note review. Clinical Frailty Scale (CFS), delirium status, and 30-day outcomes were recorded. Results: The overall prevalence of delirium was 16.3% (483). Patients with delirium were more frail than patients without delirium (median CFS 6 vs 4). The risk of delirium was greater with increasing frailty [OR 2.9 (1.8–4.6) in CFS 4 vs 1–3; OR 12.4 (6.2–24.5) in CFS 8 vs 1–3]. Higher CFS was associated with reduced recognition of delirium (OR of 0.7 (0.3–1.9) in CFS 4 compared to 0.2 (0.1–0.7) in CFS 8). These risks were both independent of age and dementia. Conclusion: We have demonstrated an incremental increase in risk of delirium with increasing frailty. This has important clinical implications, suggesting that frailty may provide a more nuanced measure of vulnerability to delirium and poor outcomes. However, the most frail patients are least likely to have their delirium diagnosed and there is a significant lack of research into the underlying pathophysiology of both of these common geriatric syndromes

    In-depth sequence analysis of highly-conserved pyrH

    No full text
    corecore