36 research outputs found

    Made from Mud: Functional Categorization and Analyses of Bronze Age Earthen Materials from Western Turkey

    Get PDF
    This contribution presents the results of a pilot study of earthen materials excavated at the Middle to Late Bronze Age site of Kaymakçı, located in western Anatolia. It argues that systematic collection and analysis of fragmentary and difficult‑to‑identify earthen materials is challenging, yet crucial. These materials inform on activities of which traces are preserved in the archaeological record but which have been largely under‑ ‑researched. Flourishing studies on earthen findings foreground architectural materials, such as mudbrick, and well‑preserved features and objects. However, earthen objects and architectural features were utilized more widely than in building architecture and only a small portion of excavated sites has good preservation. We, therefore, present the different categories of earthen materials discovered at Kaymakçı, specifically ar‑ chitecture, installations, and portable items. Our work demonstrates that by incorporating new knowledge of archaeological remains at the site and re‑studying the earthen assemblage it is possible to gain a better understanding of the morphological, functional, and social aspects of this dataset

    Early and Middle Holocene Hunter-Gatherer Occupations in Western Amazonia: The Hidden Shell Middens

    Get PDF
    We report on previously unknown early archaeological sites in the Bolivian lowlands, demonstrating for the first time early and middle Holocene human presence in western Amazonia. Multidisciplinary research in forest islands situated in seasonally-inundated savannahs has revealed stratified shell middens produced by human foragers as early as 10,000 years ago, making them the oldest archaeological sites in the region. The absence of stone resources and partial burial by recent alluvial sediments has meant that these kinds of deposits have, until now, remained unidentified. We conducted core sampling, archaeological excavations and an interdisciplinary study of the stratigraphy and recovered materials from three shell midden mounds. Based on multiple lines of evidence, including radiocarbon dating, sedimentary proxies (elements, steroids and black carbon), micromorphology and faunal analysis, we demonstrate the anthropogenic origin and antiquity of these sites. In a tropical and geomorphologically active landscape often considered challenging both for early human occupation and for the preservation of hunter-gatherer sites, the newly discovered shell middens provide evidence for early to middle Holocene occupation and illustrate the potential for identifying and interpreting early open-air archaeological sites in western Amazonia. The existence of early hunter-gatherer sites in the Bolivian lowlands sheds new light on the region's past and offers a new context within which the late Holocene "Earthmovers" of the Llanos de Moxos could have emerged. © 2013 Lombardo et al

    Does soil pyrogenic carbon determine plant functional traits in Amazon Basin forests?

    Get PDF
    Amazon forests are fire-sensitive ecosystems and consequently fires affect forest structure and composition. For instance, the legacy of past fire regimes may persist through some species and traits that are found due to past fires. In this study, we tested for relationships between functional traits that are classically presented as the main components of plant ecological strategies and environmental filters related to climate and historical fires among permanent mature forest plots across the range of local and regional environmental gradients that occur in Amazonia. We used percentage surface soil pyrogenic carbon (PyC), a recalcitrant form of carbon that can persist for millennia in soils, as a novel indicator of historical fire in old-growth forests. Five out of the nine functional traits evaluated across all 378 species were correlated with some environmental variables. Although there is more PyC in Amazonian soils than previously reported, the percentage soil PyC indicated no detectable legacy effect of past fires on contemporary functional composition. More species with dry diaspores were found in drier and hotter environments. We also found higher wood density in trees from higher temperature sites. If Amazon forest past burnings were local and without distinguishable attributes of a widespread fire regime, then impacts on biodiversity would have been small and heterogeneous. Alternatively, sufficient time may have passed since the last fire to allow for species replacement. Regardless, as we failed to detect any impact of past fire on present forest functional composition, if our plots are representative then it suggests that mature Amazon forests lack a compositional legacy of past fire

    Development of a symplectic and phase error reducing perturbation finite-difference advection scheme

    No full text
    The aim of this work is to develop a new scheme for solving the pure advection equation. This scheme formulated within the perturbation finite-difference context not only conserves symplecticity but also preserves the numerical dispersion relation equation. The employed symplectic integrator of second-order accuracy in time enables calculation of a long-time accurate solution in the sense that the Hamiltonian is conserved at all times. The generalized high-order spatially accurate perturbation difference scheme optimizes numerical phase accuracy through the minimization of the difference between the numerical and exact dispersion relation equations. Our proposed new class of phase error reducing perturbation difference schemes can in addition locally capture discontinuities underlying the concept of applying a shope/flux limiter. The high-order spatial accuracy can be recovered in a smooth region. Besides the Fourier analysis of the discretization errors, anisotropy and dispersion analyses are both conducted on the dispersion-relation and symplecticity-preserving pure advection scheme to shed light on the distinguished nature of the proposed scheme. Numerical tests are carried out and the results compare well with the exact solutions, demonstrating the efficiency, accuracy, and the discontinuity-resolving ability using the proposed class of high-resolution perturbation finite-difference schemes

    Increasing zooplankton size diversity enhances the strength of top-down control on phytoplankton through diet niche partitioning

    No full text
    1. The biodiversity-ecosystem functioning debate is a central topic in ecology. Recently, there has been a growing interest in size diversity because body size is sensitive to environmental changes and is one of the fundamental characteristics of organisms linking many ecosystem properties. However, how size diversity affects ecosystem functioning is an important yet unclear issue. 2. To fill the gap, with large-scale field data from the East China Sea, we tested the novel hypothesis that increasing zooplankton size diversity enhances top-down control on phytoplankton (H1) and compared it with five conventional hypotheses explaining the top-down control: flatter zooplankton size spectrum enhances the strength of top-down control (H2); nutrient enrichment lessens the strength of top-down control (H3); increasing zooplankton taxonomic diversity enhances the strength of top-down control (H4); increasing fish predation decreases the strength of top-down control of zooplankton on phytoplankton through trophic cascade (H5); increasing temperature intensifies the strength of top-down control (H6). 3. The results of univariate analyses support the hypotheses based on zooplankton size diversity (H1), zooplankton size spectrum (H2), nutrient (H3) and zooplankton taxonomic diversity (H4), but not the hypotheses based on fish predation (H5) and temperature (H6). More in-depth analyses indicate that zooplankton size diversity is the most important factor in determining the strength of top-down control on phytoplankton in the East China Sea. 4. Our results suggest a new potential mechanism that increasing predator size diversity enhances the strength of top-down control on prey through diet niche partitioning. This mechanism can be explained by the optimal predator-prey body-mass ratio concept. Suppose each size group of zooplankton predators has its own optimal phytoplankton prey size, increasing size diversity of zooplankton would promote diet niche partitioning of predators and thus elevates the strength of top-down control.1. The biodiversity-ecosystem functioning debate is a central topic in ecology. Recently, there has been a growing interest in size diversity because body size is sensitive to environmental changes and is one of the fundamental characteristics of organisms linking many ecosystem properties. However, how size diversity affects ecosystem functioning is an important yet unclear issue

    The legacy of 4,500 years of polyculture agroforestry in the eastern Amazon

    Get PDF
    The legacy of pre-Columbian land use in the Amazonian rainforest is one of the most controversial topics in the social1–10 and natural sciences11,12. Until now, the debate has been limited to discipline-specific studies, based purely on archaeological data8, modern vegetation13, modern ethnographic data3 or a limited integration of archaeological and palaeoecological data12. The lack of integrated studies to connect past land use with modern vegetation has left questions about the legacy of pre-Columbian land use on the modern vegetation composition in the Amazon, unanswered11. Here, we show that persistent anthropogenic landscapes for the past 4,500 years have had an enduring legacy on the hyperdominance of edible plants in modern forests in the eastern Amazon. We found an abrupt enrichment of edible plant species in fossil lake and terrestrial records associated with pre-Columbian occupation. Our results demonstrate that, through closed-canopy forest enrichment, limited clearing for crop cultivation and low-severity fire management, long-term food security was attained despite climate and social changes. Our results suggest that, in the eastern Amazon, the subsistence basis for the development of complex societies began ~4,500 years ago with the adoption of polyculture agroforestry, combining the cultivation of multiple annual crops with the progressive enrichment of edible forest species and the exploitation of aquatic resources. This subsistence strategy intensified with the later development of Amazonian dark earths, enabling the expansion of maize cultivation to the Belterra Plateau, providing a food production system that sustained growing human populations in the eastern Amazon. Furthermore, these millennial-scale polyculture agroforestry systems have an enduring legacy on the hyperdominance of edible plants in modern forests in the eastern Amazon. Together, our data provide a long-term example of past anthropogenic land use that can inform management and conservation efforts in modern Amazonian ecosystems. © 2018, The Author(s)
    corecore