8,908 research outputs found

    Resultaten en ambities : proef de vooruitgang!

    Get PDF
    In 2007 namen Ziekenhuis Gelderse Vallei in Ede en de afdeling Humane Voeding van Wageningen University het initiatief tot samenwerking en vormden zij de Alliantie Voeding Gelderse Vallei. De Alliantie Voeding koppelt preventie aan zorg. Voor jong tot oud is voorlichting over gezonde voeding van belang. Effectieve preventie én de integratie van preventie in de zorg levert gezondheidswinst en verhoging van kwaliteit van leven op individueel en populatie niveau. De Alliantie Voeding heeft hiertoe drie programma's opgesteld

    Multi-qubit gate with trapped ions for microwave and laser-based implementation

    Get PDF
    A proposal for a phase gate and a Mølmer–Sørensen gate in the dressed state basis is presented. In order to perform the multi-qubit interaction, a strong magnetic field gradient is required to couple the phonon-bus to the qubit states. The gate is performed using resonant microwave driving fields together with either a radio-frequency (RF) driving field, or additional detuned microwave driving fields. The gate is robust to ambient magnetic field fluctuations due to an applied resonant microwave driving field. Furthermore, the gate is robust to fluctuations in the microwave Rabi frequency and is decoupled from phonon dephasing due to a resonant RF or a detuned microwave driving field. This makes this new gate an attractive candidate for the implementation of high-fidelity microwave based multi-qubit gates. The proposal can also be realized in laser-based set-ups

    Simulating open quantum systems: from many-body interactions to stabilizer pumping

    Get PDF
    In a recent experiment, Barreiro et al. demonstrated the fundamental building blocks of an open-system quantum simulator with trapped ions [Nature 470, 486 (2011)]. Using up to five ions, single- and multi-qubit entangling gate operations were combined with optical pumping in stroboscopic sequences. This enabled the implementation of both coherent many-body dynamics as well as dissipative processes by controlling the coupling of the system to an artificial, suitably tailored environment. This engineering was illustrated by the dissipative preparation of entangled two- and four-qubit states, the simulation of coherent four-body spin interactions and the quantum non-demolition measurement of a multi-qubit stabilizer operator. In the present paper, we present the theoretical framework of this gate-based ("digital") simulation approach for open-system dynamics with trapped ions. In addition, we discuss how within this simulation approach minimal instances of spin models of interest in the context of topological quantum computing and condensed matter physics can be realized in state-of-the-art linear ion-trap quantum computing architectures. We outline concrete simulation schemes for Kitaev's toric code Hamiltonian and a recently suggested color code model. The presented simulation protocols can be adapted to scalable and two-dimensional ion-trap architectures, which are currently under development.Comment: 27 pages, 9 figures, submitted to NJP Focus on Topological Quantum Computatio

    Inferring the evolutionary histories of divergences in Hylobates and Nomascus gibbons through multilocus sequence data

    Get PDF
    BACKGROUND: Gibbons (Hylobatidae) are the most diverse group of living apes. They exist as geographically-contiguous species which diverged more rapidly than did their close relatives, the great apes (Hominidae). Of the four extant gibbon genera, the evolutionary histories of two polyspecific genera, Hylobates and Nomascus, have been the particular focus of research but the DNA sequence data used was largely derived from the maternally inherited mitochondrial DNA (mtDNA) locus. RESULTS: To investigate the evolutionary relationships and divergence processes of gibbon species, particularly those of the Hylobates genus, we produced and analyzed a total of 11.5 kb DNA of sequence at 14 biparentally inherited autosomal loci. We find that on average gibbon genera have a high average sequence diversity but a lower degree of genetic differentiation as compared to great ape genera. Our multilocus species tree features H. pileatus in a basal position and a grouping of the four Sundaic island species (H. agilis, H. klossii, H. moloch and H. muelleri). We conducted pairwise comparisons based on an isolation-with-migration (IM) model and detect signals of asymmetric gene flow between H. lar and H. moloch, between H. agilis and H. muelleri, and between N. leucogenys and N. siki. CONCLUSIONS: Our multilocus analyses provide inferences of gibbon evolutionary histories complementary to those based on single gene data. The results of IM analyses suggest that the divergence processes of gibbons may be accompanied by gene flow. Future studies using analyses of multi-population model with samples of known provenance for Hylobates and Nomascus species would expand the understanding of histories of gene flow during divergences for these two gibbon genera

    Cooling atomic motion with quantum interference

    Get PDF
    We theoretically investigate the quantum dynamics of the center of mass of trapped atoms, whose internal degrees of freedom are driven in a Λ\Lambda-shaped configuration with the lasers tuned at two-photon resonance. In the Lamb-Dicke regime, when the motional wave packet is well localized over the laser wavelenght, transient coherent population trapping occurs, cancelling transitions at the laser frequency. In this limit the motion can be efficiently cooled to the ground state of the trapping potential. We derive an equation for the center-of-mass motion by adiabatically eliminating the internal degrees of freedom. This treatment provides the theoretical background of the scheme presented in [G. Morigi {\it et al}, Phys. Rev. Lett. {\bf 85}, 4458 (2000)] and implemented in [C.F. Roos {\it et al}, Phys. Rev. Lett. {\bf 85}, 5547 (2000)]. We discuss the physical mechanisms determining the dynamics and identify new parameters regimes, where cooling is efficient. We discuss implementations of the scheme to cases where the trapping potential is not harmonic.Comment: 11 pages, 3 figure

    Dark resonances as a probe for the motional state of a single ion

    Full text link
    Single, rf-trapped ions find various applications ranging from metrology to quantum computation. High-resolution interrogation of an extremely weak transition under best observation conditions requires an ion almost at rest. To avoid line-broadening effects such as the second order Doppler effect or rf heating in the absence of laser cooling, excess micromotion has to be eliminated as far as possible. In this work the motional state of a confined three-level ion is probed, taking advantage of the high sensitivity of observed dark resonances to the trapped ion's velocity. Excess micromotion is controlled by monitoring the dark resonance contrast with varying laser beam geometry. The influence of different parameters such as the cooling laser intensity has been investigated experimentally and numerically

    Physics at BES-III

    Get PDF
    This physics book provides detailed discussions on important topics in Ï„\tau-charm physics that will be explored during the next few years at \bes3 . Both theoretical and experimental issues are covered, including extensive reviews of recent theoretical developments and experimental techniques. Among the subjects covered are: innovations in Partial Wave Analysis (PWA), theoretical and experimental techniques for Dalitz-plot analyses, analysis tools to extract absolute branching fractions and measurements of decay constants, form factors, and CP-violation and \DzDzb-oscillation parameters. Programs of QCD studies and near-threshold tau-lepton physics measurements are also discussed.Comment: Edited by Kuang-Ta Chao and Yi-Fang Wan

    Nonlinear atom interferometer surpasses classical precision limit

    Full text link
    Interference is fundamental to wave dynamics and quantum mechanics. The quantum wave properties of particles are exploited in metrology using atom interferometers, allowing for high-precision inertia measurements [1, 2]. Furthermore, the state-of-the-art time standard is based on an interferometric technique known as Ramsey spectroscopy. However, the precision of an interferometer is limited by classical statistics owing to the finite number of atoms used to deduce the quantity of interest [3]. Here we show experimentally that the classical precision limit can be surpassed using nonlinear atom interferometry with a Bose-Einstein condensate. Controlled interactions between the atoms lead to non-classical entangled states within the interferometer; this represents an alternative approach to the use of non-classical input states [4-8]. Extending quantum interferometry [9] to the regime of large atom number, we find that phase sensitivity is enhanced by 15 per cent relative to that in an ideal classical measurement. Our nonlinear atomic beam splitter follows the "one-axis-twisting" scheme [10] and implements interaction control using a narrow Feshbach resonance. We perform noise tomography of the quantum state within the interferometer and detect coherent spin squeezing with a squeezing factor of -8.2dB [11-15]. The results provide information on the many-particle quantum state, and imply the entanglement of 170 atoms [16]

    Excitonic effects on the two-color coherent control of interband transitions in bulk semiconductors

    Full text link
    Quantum interference between one- and two-photon absorption pathways allows coherent control of interband transitions in unbiased bulk semiconductors; carrier population, carrier spin polarization, photocurrent injection, and spin current injection may all be controlled. We extend the theory of these processes to include the electron-hole interaction. Our focus is on photon energies that excite carriers above the band edge, but close enough to it so that transition amplitudes based on low order expansions in k\mathbf{k} are applicable; both allowed-allowed and allowed-forbidden two-photon transition amplitudes are included. Analytic solutions are obtained using the effective mass theory of Wannier excitons; degenerate bands are accounted for, but envelope-hole coupling is neglected. We find a Coulomb enhancement of two-color coherent control process, and relate it to the Coulomb enhancements of one- and two-photon absorption. In addition, we find a frequency dependent phase shift in the dependence of photocurrent and spin current on the optical phases. The phase shift decreases monotonically from π/2\pi /2 at the band edge to 0 over an energy range governed by the exciton binding energy. It is the difference between the partial wave phase shifts of the electron-hole envelope function reached by one- and two-photon pathways.Comment: 31 pages, 4 figures, to be published in Phys. Rev.
    • …
    corecore