465 research outputs found

    Eudaimonistic Argumentation

    Get PDF
    Virtue theories have lately enjoyed a modest vogue in the study of argumentation, echoing the success of more far-reaching programmes in ethics and epistemology. Virtue theories of argumentation (VTA) comprise several conceptually distinct projects, including the provision of normative foundations for argument evaluation and a renewed focus on the character of good arguers. Perhaps the boldest of these is the pursuit of the fully satisfying argument, the argument that contributes to human flourishing. This project has an independently developed epistemic analogue: eudaimonistic virtue epistemology. Both projects stress the importance of widening the range of cognitive goals beyond, respectively, cogency and knowledge; both projects emphasize social factors, the right sort of community being indispensable for the cultivation of the intellectual virtues necessary to each project. This paper proposes a unification of the two projects by arguing that the intellectual good life sought by eudaimonistic virtue epistemologists is best realized through the articulation of an account of argumentation that contributes to human flourishing

    Laser writable high-K dielectric for van der Waals nano-electronics

    Get PDF
    This is the author accepted manuscript. The final version is available from American Association for the Advancement of Science via the DOI in this record.Like silicon-based semiconductor devices, van der Waals heterostructures will require integration with high-K oxides. This is needed to achieve suitable voltage scaling, improved performance as well as allowing for added functionalities. Unfortunately, commonly used high-k oxide deposition methods are not directly compatible with 2D materials. Here we demonstrate a method to embed a multi-functional few nm thick high-k oxide within van der Waals devices without degrading the properties of the neighbouring 2D materials. This is achieved by in-situ laser oxidation of embedded few layer HfS2 crystals. The resultant oxide is found to be in the amorphous phase with a dielectric constant of k~15 and break-down electric fields in the range of 0.5-0.6 V/nm. This transformation allows for the creation of a variety of fundamental nano-electronic and opto-electronic devices including, flexible Schottky barrier field effect transistors, dual gated graphene transistors as well as vertical light emitting and detecting tunnelling transistors. Furthermore, upon dielectric break-down, electrically conductive filaments are formed. This filamentation process can be used to electrically contact encapsulated conductive materials. Careful control of the filamentation process also allows for reversible switching between two resistance states. This allows for the creation of resistive switching random access memories (ReRAMs). We believe that this method of embedding a high-k oxide within complex van der Waals heterostructures could play an important role in future flexible multi-functional van der Waals devices.F.W acknowledges support from the Royal Academy of Engineering. J.D.M. acknowledges financial support from the Engineering and Physical Sciences Research Council (EPSRC) of the United Kingdom, via the EPSRC Centre for Doctoral Training in Metamaterials (Grant No. EP/L015331/1). S.R. and M.F.C. acknowledge financial support from EPSRC (Grant no. EP/K010050/1, EP/M001024/1, EP/M002438/1), from Royal Society international Exchanges Scheme 2016/R1, from The Leverhulme trust (grant title “Quantum Revolution” and "Quantum Drums"). A.P Rooney and S.J Haigh acknowledge support from the EPSRC postdoctoral fellowship and from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement ERC-2016-STG-EvoluTEM-715502) and the Defence Threat Reduction Agency (HDTRA1-12-1-0013). I.A. acknowledges financial support from The European Commission Marie Curie Individual Fellowships (Grant number 701704)

    Adult brain tumour research in 2024: Status, challenges and recommendations

    Get PDF
    In 2015, a groundswell of brain tumour patient, carer and charity activism compelled the UK Minister for Life Sciences to form a brain tumour research task and finish group. This resulted, in 2018, with the UK government pledging £20m of funding, to be paralleled with £25m from Cancer Research UK, specifically for neuro-oncology research over the subsequent 5 years. Herein, we review if and how the adult brain tumour research landscape in the United Kingdom has changed over that time and what challenges and bottlenecks remain. We have identified seven universal brain tumour research priorities and three cross-cutting themes, which span the research spectrum from bench to bedside and back again. We discuss the status, challenges and recommendations for each one, specific to the United Kingdom

    Heterostructures produced from nanosheet-based inks.

    Get PDF
    The new paradigm of heterostructures based on two-dimensional (2D) atomic crystals has already led to the observation of exciting physical phenomena and creation of novel devices. The possibility of combining layers of different 2D materials in one stack allows unprecedented control over the electronic and optical properties of the resulting material. Still, the current method of mechanical transfer of individual 2D crystals, though allowing exceptional control over the quality of such structures and interfaces, is not scalable. Here we show that such heterostructures can be assembled from chemically exfoliated 2D crystals, allowing for low-cost and scalable methods to be used in device fabrication.This work was supported by The Royal Society, U.S. Army, European Science Foundation (ESF) under the EUROCORES Programme EuroGRAPHENE (GOSPEL), European Research Council, and EC under the Graphene Flagship (contract no. CNECT-ICT-604391). Y.-J.K.’s work was supported by the Global Research Laboratory (GRL) Program (2011-0021972) of the Ministry of Education, Science and Technology, Korea. F.W. acknowledges support from the Royal Academy of Engineering; A.F. is a FRS-FNRS Research Fellow

    Trends in coagulase-negative staphylococci (CoNS), England, 2010-2021.

    Get PDF
    OBJECTIVE: To review the epidemiology of coagulase-negative staphylococci (CoNS) in England over the recent 12 year period. METHODS: Laboratory-confirmed CoNS reported from sterile sites in patients in England to the UK Health Security Agency (UKHSA) between 2010 and 2021 were extracted from the national laboratory database and analysed. RESULTS: Overall, 668 857 episodes of CoNS were reported. Unspeciated CoNS accounted for 56 % (374 228) of episodes, followed by Staphylococcus epidermidis (26 %; 174 050), S. hominis (6.5 %; 43 501) and S. capitis (3.9 %; 25 773). Unspeciated CoNS increased by 8.2 % (95 % CI, 7.1-9.3) annually between 2010 and 2016, then decreased annually by 6.4 % (95 % CI: -4.8 to -7.9) until 2021. Speciated CoNS increased by 47.6 % (95 % CI, 44.5-50.9) annually between 2010 and 2016 and increased annually by 8.9 % (95 % CI: 5.1 to 12.8) until 2021. Antimicrobial susceptibility profiles differed by species. CONCLUSIONS: Reports of CoNS from normally sterile body sites in patients in England increased between 2010 and 2016 and remained stable between 2017 and 2021. There has been a striking improvement in species-level identification of CoNS in recent years. Monitoring trends in CoNS epidemiology is crucial for development of observational and clinical intervention studies on individual species

    Dental management considerations for the patient with an acquired coagulopathy. Part 1: Coagulopathies from systemic disease

    Get PDF
    Current teaching suggests that many patients are at risk for prolonged bleeding during and following invasive dental procedures, due to an acquired coagulopathy from systemic disease and/or from medications. However, treatment standards for these patients often are the result of long-standing dogma with little or no scientific basis. The medical history is critical for the identification of patients potentially at risk for prolonged bleeding from dental treatment. Some time-honoured laboratory tests have little or no use in community dental practice. Loss of functioning hepatic, renal, or bone marrow tissue predisposes to acquired coagulopathies through different mechanisms, but the relationship to oral haemostasis is poorly understood. Given the lack of established, science-based standards, proper dental management requires an understanding of certain principles of pathophysiology for these medical conditions and a few standard laboratory tests. Making changes in anticoagulant drug regimens are often unwarranted and/or expensive, and can put patients at far greater risk for morbidity and mortality than the unlikely outcome of postoperative bleeding. It should be recognised that prolonged bleeding is a rare event following invasive dental procedures, and therefore the vast majority of patients with suspected acquired coagulopathies are best managed in the community practice setting

    Biodiversity Loss and the Taxonomic Bottleneck: Emerging Biodiversity Science

    Get PDF
    Human domination of the Earth has resulted in dramatic changes to global and local patterns of biodiversity. Biodiversity is critical to human sustainability because it drives the ecosystem services that provide the core of our life-support system. As we, the human species, are the primary factor leading to the decline in biodiversity, we need detailed information about the biodiversity and species composition of specific locations in order to understand how different species contribute to ecosystem services and how humans can sustainably conserve and manage biodiversity. Taxonomy and ecology, two fundamental sciences that generate the knowledge about biodiversity, are associated with a number of limitations that prevent them from providing the information needed to fully understand the relevance of biodiversity in its entirety for human sustainability: (1) biodiversity conservation strategies that tend to be overly focused on research and policy on a global scale with little impact on local biodiversity; (2) the small knowledge base of extant global biodiversity; (3) a lack of much-needed site-specific data on the species composition of communities in human-dominated landscapes, which hinders ecosystem management and biodiversity conservation; (4) biodiversity studies with a lack of taxonomic precision; (5) a lack of taxonomic expertise and trained taxonomists; (6) a taxonomic bottleneck in biodiversity inventory and assessment; and (7) neglect of taxonomic resources and a lack of taxonomic service infrastructure for biodiversity science. These limitations are directly related to contemporary trends in research, conservation strategies, environmental stewardship, environmental education, sustainable development, and local site-specific conservation. Today’s biological knowledge is built on the known global biodiversity, which represents barely 20% of what is currently extant (commonly accepted estimate of 10 million species) on planet Earth. Much remains unexplored and unknown, particularly in hotspots regions of Africa, South Eastern Asia, and South and Central America, including many developing or underdeveloped countries, where localized biodiversity is scarcely studied or described. ‘‘Backyard biodiversity’’, defined as local biodiversity near human habitation, refers to the natural resources and capital for ecosystem services at the grassroots level, which urgently needs to be explored, documented, and conserved as it is the backbone of sustainable economic development in these countries. Beginning with early identification and documentation of local flora and fauna, taxonomy has documented global biodiversity and natural history based on the collection of ‘‘backyard biodiversity’’ specimens worldwide. However, this branch of science suffered a continuous decline in the latter half of the twentieth century, and has now reached a point of potential demise. At present there are very few professional taxonomists and trained local parataxonomists worldwide, while the need for, and demands on, taxonomic services by conservation and resource management communities are rapidly increasing. Systematic collections, the material basis of biodiversity information, have been neglected and abandoned, particularly at institutions of higher learning. Considering the rapid increase in the human population and urbanization, human sustainability requires new conceptual and practical approaches to refocusing and energizing the study of the biodiversity that is the core of natural resources for sustainable development and biotic capital for sustaining our life-support system. In this paper we aim to document and extrapolate the essence of biodiversity, discuss the state and nature of taxonomic demise, the trends of recent biodiversity studies, and suggest reasonable approaches to a biodiversity science to facilitate the expansion of global biodiversity knowledge and to create useful data on backyard biodiversity worldwide towards human sustainability

    Development of a modified floristic quality index as a rapid habitat assessment method in the northern Everglades

    Get PDF
    Floristic quality assessments (FQA) using floristic quality indices (FQIs) are useful tools for assessing and comparing vegetation communities and related habitat condition. However, intensive vegetation surveys requiring significant time and technical expertise are necessary, which limits the use of FQIs in environmental monitoring programs. This study modified standard FQI methods to develop a rapid assessment method for characterizing and modeling change in wetland habitat condition in the northern Everglades. Method modifications include limiting vegetation surveys to a subset of taxa selected as indicators of impact and eliminating richness and/or abundance factors from the equation. These modifications reduce the amount of time required to complete surveys and minimizes misidentification of species, which can skew results. The habitat characterization and assessment tool (HCAT) developed here is a FQA that uses a modified FQI to detect and model changes in habitat condition based on vegetation communities, characterize levels of impact as high, moderate, or low, provide predictive capabilities for assessing natural resource management or water management operation alternatives, and uniquely links a FQI with readily accessible environmental data. For application in the northern Everglades, surface water phosphorus concentrations, specific conductivity, distance from canal, and days since dry (5-year average) explained 67% of the variability in the dataset with \u3e 99.9% confidence. The HCAT approach can be used to monitor, assess, and evaluate habitats with the objective of informing management decisions (e.g., as a screening tool) to maximize conservation and restoration of protected areas and is transferable to other wetlands with additional modification
    corecore