278 research outputs found

    Chlorination Disinfection By-products and Pancreatic Cancer Risk

    Get PDF
    Chlorination disinfection by-products (CDBPs) are produced during the treatment of water with chlorine to remove bacterial contamination. CDBPs have been associated with an increased risk of bladder cancer. There is also some evidence that they may increase the risk of pancreatic cancer. We report results from a population-based case–control study of 486 incident cases of pancreatic cancer and 3,596 age- and sex-matched controls. Exposure to chlorination by-products was estimated by linking lifetime residential histories to two different databases containing information on CDBP levels in municipal water supplies. Logistic regression analysis found no evidence of increased pancreatic cancer risk at higher CDBP concentrations (all odds ratios < 1.3). Null findings were also obtained assuming a latency period for pancreatic cancer induction of 3, 8, or 13 years

    Chlorination Disinfection By-Products in Drinking Water and Congenital Anomalies: Review and Meta-Analyses

    Get PDF
    This study aims to review epidemiologic evidence of the association between exposure to chlorination disinfection by-products (DBPs) and congenital anomalies. All epidemiologic studies that evaluated a relationship between an index of DBP exposure and risk of congenital anomalies were analyzed. For all congenital anomalies combined, the meta-analysis gave a statistically significant excess risk for high versus low exposure to water chlorination or TTHM (17%; 95% CI, 3-34) based on a small number of studies. The meta-analysis also suggested a statistically significant excess risk for ventricular septal defects (58%; 95% CI, 21-107), but based on only three studies, and there was little evidence of an exposure-response relationship. It was observed no statistically significant relationships in the other meta-analyses and little evidence for publication bias, except for urinary tract defects and cleft lip and palate. Although some individual studies have suggested an association between chlorination disinfection by-products and congenital anomalies, meta-analyses of all currently available studies demonstrate little evidence of such association

    Polymorphisms in GSTT1, GSTZ1, and CYP2E1, Disinfection By-products, and Risk of Bladder Cancer in Spain

    Get PDF
    Background: Bladder cancer has been linked with long-term exposure to disinfection by-products (DBPs) in drinking water.Objectives: In this study we investigated the combined influence of DBP exposure and polymorphisms in glutathione S-transferase (GSTT1, GSTZ1) and cytochrome P450 (CYP2E1) genes in the metabolic pathways of selected by-products on bladder cancer in a hospital-based case–control study in Spain. Methods: Average exposures to trihalomethanes (THMs; a surrogate for DBPs) from 15 years of age were estimated for each subject based on residential history and information on municipal water sources among 680 cases and 714 controls. We estimated effects of THMs and GSTT1, GSTZ1, and CYP2E1 polymorphisms on bladder cancer using adjusted logistic regression models with and without interaction terms. Results: THM exposure was positively associated with bladder cancer: adjusted odds ratios (ORs) and 95% confidence intervals (CIs) were 1.2 (0.8–1.8), 1.8 (1.1–2.9), and 1.8 (0.9–3.5) for THM quartiles 2, 3, and 4, respectively, relative to quartile 1. Associations between THMs and bladder cancer were stronger among subjects who were GSTT1 +/+ or +/– versus GSTT1 null (pinteraction = 0.021), GSTZ1 rs1046428 CT/TT versus CC (pinteraction = 0.018), or CYP2E1 rs2031920 CC versus CT/TT (pinteraction = 0.035). Among the 195 cases and 192 controls with high-risk forms of GSTT1 and GSTZ1, the ORs for quartiles 2, 3, and 4 of THMs were 1.5 (0.7–3.5), 3.4 (1.4–8.2), and 5.9 (1.8–19.0), respectively. Conclusions: Polymorphisms in key metabolizing enzymes modified DBP-associated bladder cancer risk. The consistency of these findings with experimental observations of GSTT1, GSTZ1, and CYP2E1 activity strengthens the hypothesis that DBPs cause bladder cancer and suggests possible mechanisms as well as the classes of compounds likely to be implicated.This work was funded by the Intramural Research Program of the National Institutes of Health, National Cancer Institute (N02-CP-11015), the Fondo de Investigación Sanitaria (00/0745, G03/174, G03/160, C03/09, and C03/90), and the Instituto de Salud Carlos III, Spanish Health Ministry (CP06/00341

    Risk of Stillbirth in the Relation to Water Disinfection By-Products: A Population-Based Case-Control Study in Taiwan

    Get PDF
    Background: Few epidemiological studies that have assessed the relation between water disinfection by-products (DBPs) and the risk of stillbirth provide inconsistent results. The objective was to assess the relation between exposure to water disinfection by-products and the risk of stillbirth. Methods: We conducted a population-based case-control study of 3,289 cases of stillbirth and a random sample of 32,890 control subjects from 396,049 Taiwanese newborns in 2001–2003 using information from the Birth Registry and Waterworks Registry in Taiwan. We compared the risk of stillbirth in four disinfection by-product exposure categories based on the levels of total trihalomethanes (TTHMs) representing high (TTHMs 20+ mg/L), medium (TTHMs 10–19 mg/L), low exposure (TTHMs 5–9 mg/L), and 0–4 mg/L as the reference category. In addition, we conducted a meta-analysis of the results from the present and 5 previous studies focusing on stillbirth. Findings: In logistic regression analysis adjusting for gender, maternal age, plurality, conception of season and population density of the municipality where the mother lived during pregnancy, the odds ratio (OR) for stillbirth was 1.10 (95 % CI 1.00–1.21) for medium exposure and 1.06 (95 % 0.96–1.17) for high exposure compared to reference category. In the metaanalysis, the summary odds ratio for stillbirth (1.11, 95 % CI: 1.03, 1.19) was consistently elevated. Conclusions: The present study is consistent with the hypothesis that the risk of stillbirth is related to prenatal exposure t

    Simultaneous Inhibition of mTOR-Containing Complex 1 (mTORC1) and MNK Induces Apoptosis of Cutaneous T-Cell Lymphoma (CTCL) Cells

    Get PDF
    BACKGROUND: mTOR kinase forms the mTORC1 complex by associating with raptor and other proteins and affects a number of key cell functions. mTORC1 activates p70S6kinase 1 (p70S6K1) and inhibits 4E-binding protein 1 (4E-BP1). In turn, p70S6K1 phosphorylates a S6 protein of the 40S ribosomal subunit (S6rp) and 4E-BP1, with the latter negatively regulating eukaryotic initiation factor 4E (eIF-4E). MNK1 and MNK2 kinases phosphorylate and augment activity of eIF4E. Rapamycin and its analogs are highly specific, potent, and relatively non-toxic inhibitors of mTORC1. Although mTORC1 activation is present in many types of malignancies, rapamycin-type inhibitors shows relatively limited clinical efficacy as single agents. Initially usually indolent, CTCL displays a tendency to progress to the aggressive forms with limited response to therapy and poor prognosis. Our previous study (M. Marzec et al. 2008) has demonstrated that CTCL cells display mTORC1 activation and short-term treatment of CTCL-derived cells with rapamycin suppressed their proliferation and had little effect on the cell survival. METHODS: Cells derived from CTCL were treated with mTORC1 inhibitor rapamycin and MNK inhibitor and evaluated for inhibition of the mTORC1 signaling pathway and cell growth and survival. RESULTS: Whereas the treatment with rapamycin persistently inhibited mTORC1 signaling, it suppressed only partially the cell growth. MNK kinase mediated the eIF4E phosphorylation and inhibition or depletion of MNK markedly suppressed proliferation of the CTCL cells when combined with the rapamycin-mediated inhibition of mTORC1. While MNK inhibition alone mildly suppressed the CTCL cell growth, the combined MNK and mTORC1 inhibition totally abrogated the growth. Similarly, MNK inhibitor alone displayed a minimal pro-apoptotic effect; in combination with rapamycin it triggered profound cell apoptosis. CONCLUSIONS: These findings indicate that the combined inhibition of mTORC1 and MNK may prove beneficial in the treatment of CTCL and other malignancies

    Clinical and laboratory experience of vorinostat (suberoylanilide hydroxamic acid) in the treatment of cutaneous T-cell lymphoma

    Get PDF
    The most common cutaneous T-cell lymphomas (CTCLs) – mycosis fungoides (MF) and Sézary Syndrome – are characterised by the presence of clonally expanded, skin-homing helper-memory T cells exhibiting abnormal apoptotic control mechanisms. Epigenetic modulation of genes that induce apoptosis and differentiation of malignant T cells may therefore represent an attractive new strategy for targeted therapy for T-cell lymphomas. In vitro studies show that vorinostat (suberoylanilide hydroxamic acid or SAHA), an oral inhibitor of class I and II histone deacetylases, induces selective apoptosis of malignant CTCL cell lines and peripheral blood lymphocytes from CTCL patients at clinically achievable doses. In a Phase IIa clinical trial, vorinostat therapy achieved a meaningful partial response (>50% reduction in disease burden) in eight out of 33 (24%) patients with heavily pretreated, advanced refractory CTCL. The most common major toxicities of oral vorinostat therapy were fatigue and gastrointestinal symptoms (diarrhoea, altered taste, nausea, and dehydration from not eating). Thrombocytopenia was dose limiting in patients receiving oral vorinostat at the higher dose induction levels of 300 mg twice daily for 14 days. These studies suggest that vorinostat represents a promising new agent in the treatment of CTCL patients. Additional studies are underway to define the exact mechanism (s) of by which vorinostat induces selective apoptosis in CTCL cells and to further evaluate the antitumour efficacy of vorinostat in a Phase IIb study in CTCL patients

    Malignant inflammation in cutaneous T-cell lymphoma: a hostile takeover

    Get PDF
    Cutaneous T-cell lymphomas (CTCL) are characterized by the presence of chronically inflamed skin lesions containing malignant T cells. Early disease presents as limited skin patches or plaques and exhibits an indolent behavior. For many patients, the disease never progresses beyond this stage, but in approximately one third of patients, the disease becomes progressive, and the skin lesions start to expand and evolve. Eventually, overt tumors develop and the malignant T cells may disseminate to the blood, lymph nodes, bone marrow, and visceral organs, often with a fatal outcome. The transition from early indolent to progressive and advanced disease is accompanied by a significant shift in the nature of the tumor-associated inflammation. This shift does not appear to be an epiphenomenon but rather a critical step in disease progression. Emerging evidence supports that the malignant T cells take control of the inflammatory environment, suppressing cellular immunity and anti-tumor responses while promoting a chronic inflammatory milieu that fuels their own expansion. Here, we review the inflammatory changes associated with disease progression in CTCL and point to their wider relevance in other cancer contexts. We further define the term "malignant inflammation" as a pro-tumorigenic inflammatory environment orchestrated by the tumor cells and discuss some of the mechanisms driving the development of malignant inflammation in CTCL

    Sugar and abscisic acid signaling orthologs are activated at the onset of ripening in grape

    Get PDF
    The onset of ripening involves changes in sugar metabolism, softening, and color development. Most understanding of this process arises from work in climacteric fruits where the control of ripening is predominately by ethylene. However, many fruits such as grape are nonclimacteric, where the onset of ripening results from the integration of multiple hormone signals including sugars and abscisic acid (ABA). In this study, we identified ten orthologous gene families in Vitis vinifera containing components of sugar and ABA-signaling pathways elucidated in model systems, including PP2C protein phosphatases, and WRKY and homeobox transcription factors. Gene expression was characterized in control- and deficit-irrigated, field-grown Cabernet Sauvignon. Sixty-seven orthologous genes were identified, and 38 of these were expressed in berries. Of the genes expressed in berries, 68% were differentially expressed across development and/or in response to water deficit. Orthologs of several families were induced at the onset of ripening, and induced earlier and to higher levels in response to water deficit; patterns of expression that correlate with sugar and ABA accumulation during ripening. Similar to field-grown berries, ripening phenomena were induced in immature berries when cultured with sucrose and ABA, as evidenced by changes in color, softening, and gene expression. Finally, exogenous sucrose and ABA regulated key orthologs in culture, similar to their regulation in the field. This study identifies novel candidates in the control of nonclimacteric fruit ripening and demonstrates that grape orthologs of key sugar and ABA-signaling components are regulated by sugar and ABA in fleshy fruit

    Age-Dependent Maturation of Toll-Like Receptor-Mediated Cytokine Responses in Gambian Infants

    Get PDF
    The global burden of neonatal and infant mortality due to infection is staggering, particularly in resource-poor settings. Early childhood vaccination is one of the major interventions that can reduce this burden, but there are specific limitations to inducing effective immunity in early life, including impaired neonatal leukocyte production of Th1-polarizing cytokines to many stimuli. Characterizing the ontogeny of Toll-like receptor (TLR)-mediated innate immune responses in infants may shed light on susceptibility to infection in this vulnerable age group, and provide insights into TLR agonists as candidate adjuvants for improved neonatal vaccines. As little is known about the leukocyte responses of infants in resource-poor settings, we characterized production of Th1-, Th2-, and anti-inflammatory- cytokines in response to agonists of TLRs 1-9 in whole blood from 120 Gambian infants ranging from newborns (cord blood) to 12 months of age. Most of the TLR agonists induced TNFα, IL-1β, IL-6, and IL-10 in cord blood. The greatest TNFα responses were observed for TLR4, -5, and -8 agonists, the highest being the thiazoloquinoline CLO75 (TLR7/8) that also uniquely induced cord blood IFNγ production. For most agonists, TLR-mediated TNFα and IFNγ responses increased from birth to 1 month of age. TLR8 agonists also induced the greatest production of the Th1-polarizing cytokines TNFα and IFNγ throughout the first year of life, although the relative responses to the single TLR8 agonist and the combined TLR7/8 agonist changed with age. In contrast, IL-1β, IL-6, and IL-10 responses to most agonists were robust at birth and remained stable through 12 months of age. These observations provide fresh insights into the ontogeny of innate immunity in African children, and may inform development of age-specific adjuvanted vaccine formulations important for global health
    corecore