3,266 research outputs found

    Thermodynamics of the hydraulic head, pressure head, and gravitational head in subsurface hydrology, and principles for their spatial averaging

    No full text
    International audienceIn order to establish a thermodynamic justification of the theoretical relationship between the hydraulic, pressure/matric, and gravitational head in subsurface hydrology, the thermodynamic literature pertaining to subsurface flow processes is reviewed. The incompressibility of liquids negates a thermodynamic definition of pressure, which gives rise to several inconsistencies in pore scale theories. At larger scales, the gravitational potential and fluid pressure are treated as additive potentials. This superposition principle is replicated in the well-established relationship between the various heads according to subsurface hydrological theory. The necessary requirement that the superposition be maintained across scales is combined with conservation of energy during volume integration to establish consistent upscaling equations for the various heads. The power of these upscaling equations is demonstrated by the derivation of an upscaled water content-matric head relationship and the resolution of an apparent paradox reported in the literature that is shown to have arisen from a violation of the superposition principle

    Transient flow between aquifers and surface water: analytically derived field-scale hydraulic heads and fluxes

    Get PDF
    The increasing importance of catchment-scale and basin-scale models of the hydrological cycle makes it desirable to have a simple, yet physically realistic model for lateral subsurface water flow. As a first building block towards such a model, analytical solutions are presented for horizontal groundwater flow to surface waters held at prescribed water levels for aquifers with parallel and radial flow. The solutions are valid for a wide array of initial and boundary conditions and additions or withdrawals of water, and can handle discharge into as well as lateral infiltration from the surface water. Expressions for the average hydraulic head, the flux to or from the surface water, and the aquifer-scale hydraulic conductivity are developed to provide output at the scale of the modelled system rather than just point-scale values. The upscaled conductivity is time-variant. It does not depend on the magnitude of the flux but is determined by medium properties as well as the external forcings that drive the flow. For the systems studied, with lateral travel distances not exceeding 10 m, the circular aquifers respond very differently from the infinite-strip aquifers. The modelled fluxes are sensitive to the magnitude of the storage coefficient. For phreatic aquifers a value of 0.2 is argued to be representative, but considerable variations are likely. The effect of varying distributions over the day of recharge damps out rapidly; a soil water model that can provide accurate daily totals is preferable over a less accurate model hat correctly estimates the timing of recharge peaks

    Measuring very negative water potentials with polymer tensiometers: principles, performance and applications

    Get PDF
    In recent years, a polymer tensiometer (POT) was developed and tested to directly measure matric potentials in dry soils. By extending the measurement range to wilting point (a 20-fold increase compared to conventional, water-filled tensiometers), a myriad of previously unapproachable research questions are now open to experimental exploration. Furthermore, the instrument may well allow the development of more water-efficient irrigation strategies by recording water potential rather than soil water content. The principle of the sensor is to fill it with a polymer solution instead of water, thereby building up osmotic pressure inside the sensor. A high-quality ceramic allows the exchange of water with the soil while retaining the polymer. The ceramic has pores sufficiently small to remain saturated even under very negative matric potentials. Installing the sensor in an unsaturated soil causes the high pressure of the polymer solution to drop as the water potentials in the soil and in the POT equilibrate. As long as the pressure inside the polymer chamber remains sufficiently large to prevent cavitation, the sensor will function properly. If the osmotic potential in the polymer chamber can produce a pressure of approximately 2.0 MPa when the sensor is placed in water, proper readings down to wilting point are secured. Various tests in disturbed soil, including an experiment with root water uptake, demonstrate the operation and performance of the new polymer tensiometer and illustrate how processes such as root water uptake can be studied in more detail than before. The paper discusses the available data and explores the long term perspectives offered by the instrument

    Polymer tensiometers with ceramic cones: direct observations of matric pressures in drying soils

    Get PDF
    Measuring soil water potentials is crucial to characterize vadose zone processes. Conventional tensiometers only measure until approximately −0.09 MPa, and indirect methods may suffer from the non-uniqueness in the relationship between matric potential and measured properties. Recently developed polymer tensiometers (POTs) are able to directly measure soil matric potentials until the theoretical wilting point (−1.6 MPa). By minimizing the volume of polymer solution inside the POT while maximizing the ceramic area in contact with that polymer solution, response times drop to acceptable ranges for laboratory and field conditions. Contact with the soil is drastically improved with the use of cone-shaped solid ceramics instead of flat ceramics. The comparison between measured potentials by polymer tensiometers and indirectly obtained potentials with time domain reflectometry highlights the risk of using the latter method at low water contents. By combining POT and time domain reflectometry readings in situ moisture retention curves can be measured over the range permitted by the measurement range of both POT and time domain reflectometry

    Extensive meiotic asynapsis in mice antagonises meiotic silencing of unsynapsed chromatin and consequently disrupts meiotic sex chromosome inactivation

    Get PDF
    Chromosome synapsis during zygotene is a prerequisite for the timely homologous recombinational repair of meiotic DNA double-strand breaks (DSBs). Unrepaired DSBs are thought to trigger apoptosis during midpachytene of male meiosis if synapsis fails. An early pachytene response to asynapsis is meiotic silencing of unsynapsed chromatin (MSUC), which, in normal males, silences the X and Y chromosomes (meiotic sex chromosome inactivation [MSCI]). In this study, we show that MSUC occurs in Spo11-null mouse spermatocytes with extensive asynapsis but lacking meiotic DSBs. In contrast, three mutants (Dnmt3l, Msh5, and Dmc1) with high levels of asynapsis and numerous persistent unrepaired DSBs have a severely impaired MSUC response. We suggest that MSUC-related proteins, including the MSUC initiator BRCA1, are sequestered at unrepaired DSBs. All four mutants fail to silence the X and Y chromosomes (MSCI failure), which is sufficient to explain the midpachytene apoptosis. Apoptosis does not occur in mice with a single additional asynapsed chromosome with unrepaired meiotic DSBs and no disturbance of MSCI

    Magnetic-film atom chip with 10 μ\mum period lattices of microtraps for quantum information science with Rydberg atoms

    Get PDF
    We describe the fabrication and construction of a setup for creating lattices of magnetic microtraps for ultracold atoms on an atom chip. The lattice is defined by lithographic patterning of a permanent magnetic film. Patterned magnetic-film atom chips enable a large variety of trapping geometries over a wide range of length scales. We demonstrate an atom chip with a lattice constant of 10 μ\mum, suitable for experiments in quantum information science employing the interaction between atoms in highly-excited Rydberg energy levels. The active trapping region contains lattice regions with square and hexagonal symmetry, with the two regions joined at an interface. A structure of macroscopic wires, cut out of a silver foil, was mounted under the atom chip in order to load ultracold 87^{87}Rb atoms into the microtraps. We demonstrate loading of atoms into the square and hexagonal lattice sections simultaneously and show resolved imaging of individual lattice sites. Magnetic-film lattices on atom chips provide a versatile platform for experiments with ultracold atoms, in particular for quantum information science and quantum simulation.Comment: 7 pages, 7 figure

    The (co-)occurrence of problematic video gaming, substance use, and psychosocial problems in adolescents

    Get PDF
    Aims. The current study explored the nature of problematic (addictive) video gaming and the association with game type, psychosocial health, and substance use. Methods. Data were collected using a paper and pencil survey in the classroom setting. Three samples were aggregated to achieve a total sample of 8478 unique adolescents. Scales included measures of game use, game type, the Video game Addiction Test (VAT), depressive mood, negative self-esteem, loneliness, social anxiety, education performance, and use of cannabis, alcohol and nicotine (smoking). Results. Findings confirmed problematic gaming is most common amongst adolescent gamers who play multiplayer online games. Boys (60%) were more likely to play online games than girls (14%) and problematic gamers were more likely to be boys (5%) than girls (1%). High problematic gamers showed higher scores on depressive mood, loneliness, social anxiety, negative self-esteem, and self-reported lower school performance. Nicotine, alcohol, and cannabis using boys were almost twice more likely to report high PVG than non-users. Conclusions. It appears that online gaming in general is not necessarily associated with problems. However, problematic gamers do seem to play online games more often, and a small subgroup of gamers – specifically boys – showed lower psychosocial functioning and lower grades. Moreover, associations with alcohol, nicotine, and cannabis use are found. It would appear that problematic gaming is an undesirable problem for a small subgroup of gamers. The findings encourage further exploration of the role of psychoactive substance use in problematic gaming

    Divertor conditions relevant for fusion reactors achieved with linear plasma generator

    Get PDF
    Intense magnetized hydrogen and deuterium plasmas have been produced with electron densities up to 3.6¿×¿1020¿m-3 and electron temperatures up to 3.7¿eV with a linear plasma generator. Exposure of a W target has led to average heat and particle flux densities well in excess of 4¿MW m-2 and 1024¿m-2 s-1, respectively. We have shown that the plasma surface interactions are dominated by the incoming ions. The achieved conditions correspond very well to the projected conditions at the divertor strike zones of fusion reactors such as ITER. In addition, the machine has an unprecedented high gas efficiency

    Does a Perturbation Based Gait Intervention Enhance Gait Stability in Fall Prone Stroke Survivors?:A Pilot Study

    Get PDF
    A recent review indicated that perturbation based training (PBT) interventions are effective in reducing falls in older adults and patients with Parkinson's disease. It is unknown whether this type of intervention is effective in stroke survivors. We determined whether PBT can enhance gait stability in stroke survivors. Ten chronic stroke survivors who experienced falls in the past six months participated in the PBT. Participants performed 10 training sessions over a six-week period. The gait training protocol was progressive and each training contained, unexpected gait perturbations and expected gait perturbations. Evaluation of gait stability was performed by determining steady-state gait characteristics and daily-life gait characteristics. We previously developed fall prediction models for both gait assessment methods. We evaluated whether predicted fall risk was reduced after PBT according to both models. Steady-state gait characteristics significantly improved and consequently predicted fall risk was reduced after the PBT. Daily-life gait characteristics, however, did not change and thus predicted fall risk based on daily-life gait remained unchanged after the PBT. A PBT resulted in more stable gait on a treadmill and thus lower predicted fall risk. However, the more stable gait on the treadmill did not transfer to a more stable gait in daily life

    Androgen receptor abnormalities

    Get PDF
    The human androgen receptor is a member of the superfamily of steroid hormone receptors. Proper functioning of this protein is a prerequisite for normal male sexual differentiation and development. The cloning of the human androgen receptor cDNA and the elucidation of the genomic organization of the corresponding gene has enabled us to study androgen receptors in subjects with the clinical manifestation of androgen insensitivity and in a human prostate carcinoma cell line (LNCaP). Using PCR amplification, subcloning and sequencing of exons 2–8, we identified a G → T mutation in the androgen receptor gene of a subject with the complete form of androgen insensitivity, which inactivates the splice donor site at the exon 4/intron 4 boundary. This mutation causes the inactivation of a cryptic splice donor site in exon 4, which results in the deletion of 41 amino acids from the steroid binding domain. In two other independently arising cases we identified two different nucleotide alterations in codon 686 (GAC; aspartic acid) located in exon 4. One mutation (G → C) results in an aspartic acid → histidine substitution (with negligible androgen binding), whereas the other mutation (G → A) leads to an aspartic acid → asparagine substitution (normal androgen binding, but a rapidly dissociating androgen receptor complex). Sequence analysis of the androgen receptor in human LNCaP-cells (lymph node carcinoma of the prostate) revealed a point mutation (A → G) in codon 868 in exon 8 resulting in the substitution of threonine by alanine. This mutation is the cause of the altered steroid binding specificity of the LNCaP-cell androgen receptor. The functional consequences of the observed mutations with respect to protein expression, specific ligand binding and transcriptional activation, were established after transient expression of the mutant receptors in COS and HeLa cells. These findings illustrate that functional error
    corecore