45 research outputs found

    Design of experiment in production process innovation

    Get PDF
    In his famous book Design and Analysis of Experiments, Montgomery describes Design of Experiment (DOE) as a broad approach to an experiment, starting from the recognition of and statement of the problem, going through the experimental design and to the possible solution, ending to conclusion and recommendations. Specifically, DOE is known to be a powerful instrument based on statistics to design and analyze experiments. Potentiality of DOE is well known and appreciated among scholars. In some fields its potentiality is recognized and appreciated also by practitioners. That’s why there is an extensive use of Design of Experiment in improvement of industrial process quality. According to the definition given by Bisgaard, innovation is the complete process of development and eventual commercialization of new products and services, new methods of production or provision, new methods of transportation or service delivery, new business models, new markets, or new forms of organization. While the use of DOE is well spread in industrial experimentation to improve quality and robustness of processes, the advantage of using DOE for innovation is debated among scholars and among practitioners. The idea of investigating the use of DOE for production process innovation arose from this debate. Different perspectives have been investigated. The effectiveness of DOE to support and enhance the innovation of a production process is highlighted by means of a case study in which a strategy to innovate a thermoforming process for the production of a functional packaging has been developed. DOE enhanced innovation capability allowing reduction of systematic errors and distortions, full exploration of factorial space, and reduction of number of tests. DOE allowed to identify and overcome the mismatch between control factors in laboratory and in production line. Another perspective was the management of the innovation process. The positive impact on innovation process management of adoption of DOE is shown by means of a case study. DOE proved to be helpful providing proper instruments, and impacting on five dimensions typical of managerial field. Namely: decision making, integration, communication, time and cost, and knowledge management. Concerning the data analysis, some nonparametric methods of analysis have been investigated. A simulation study was used to compare some advanced univariate nonparamentric tests in a crossed factorial design. The study revealed that certain methods of analysis perform better than others depending on the data set and on the objective of the analysis. As a consequence, there does not emerge a unique approach in the design phase of the experiment, but various aspects have to be taken into account simultaneously. A thoughtful choice of the most suitable test enhances the positive impact that DOE has on the innovation of a production process. Furthermore, a novel multivariate nonparametric approach based on NonParametric Combination (NPC) applied to Synchronized Permutation (SP) tests for two-way crossed factorial design was developed. It revealed to be a good instrument for inferential statistics when assumptions of MANOVA are violated. A great advantage given by the adoption of these tests is that they well perform with small sample size. This reflects the frequent needs of practitioners in the industrial environment where there are constraints or limited resources for the experimental design. Furthermore, there is an important property of NPC of SP tests that can be exploited to increase their power: the finite sample consistency. Indeed, an increase in rejection rate can be observed under alternative hypothesis when the number of response variables increases with fixed number of observed units. Properties of this multivariate test make of it a useful instrument when using DOE to innovate a production process and some specific conditions are verified

    Multivariate small sample tests for two-way designs with applications to industrial statistics

    Get PDF
    In this paper, we present a novel nonparametric approach for multivariate analysis of two-way crossed factorial design based on NonParametric Combination applied to Synchronized Permutation tests. This nonparametric hypothesis testing procedure not only allows to overcome the shortcomings of MANOVA test like violation of assumptions such as multivariate normality or covariance homogeneity, but, in an extensive simulation study, reveals to be a powerful instrument both in case of small sample size and many response variables. We contextualize its application in the field of industrial experiments and we assume a linear additive model for the data set analysis. Indeed, the linear additive model interpretation well adapts to the industrial production environment because of the way control of production machineries is implemented. The case of small sample size reflects the frequent needs of practitioners in the industrial environment where there are constraints or limited resources for the experimental design. Furthermore, an increase in rejection rate can be observed under alternative hypothesis when the number of response variables increases with fixed number of observed units. This could lead to a strategical benefit considering that in many real problems it could be easier to collect more information on a single experimental unit than adding a new unit to the experimental design. An application to industrial thermoforming processes is useful to illustrate and highlight the benefits of the adoption of the herein presented nonparametric approach

    The primary structure of the flavoprotein D-aspartate oxidase from beef kidney.

    Get PDF
    The complete primary structure of the peroxisomal flavoenzyme D-aspartate oxidase from beef kidney has been determined by analyses of the peptides obtained through fragmentation of the carboxymethylated protein with trypsin, CNBr, heptafluorobutyric acid/CNBr and Staphylococcus aureus V8 protease. The protein consists of a single polypeptide of 338 residues, accounting for a M(r) of 37,305 for the apoprotein. A form of the enzyme lacking Lys-338 and therefore ending with Pro-337 has been detected. The N-terminal residue is blocked. Seven cysteines and no disulfide bridges are present. Residue 228 can be either Ile or Val. Thus, D-aspartate oxidase presents two types of heterogeneity in the polypeptide chain in addition to the one already described concerning the possible content of FAD or 6-hydroxyflavin adenine dinucleotide. Comparison of the primary structure of D-aspartate oxidase with other known sequences reveals that D-aspartate oxidase is homologous with D-amino acid oxidase (another flavo-oxidase) and does not present significant sequence similarities with any other protein, including flavoenzymes

    Human biomonitoring in the area around the petrochemical site in Gela, Sicily-Italy

    Get PDF
    Close to the town of Gela (Sicily, Italy) a petrochemical site is operating since 1962. A power station, chemical plants and an oil refiney plant incleded. In 1990 a large area around the site was declared " at high risk of environmental cirsis" in 2000 a subarea was designated " Reclamation Site of National Inerest" Extremely high concentrations of hazardous chemicals have been measured in soil, surface and groundwater, in marine water and sediments. Mortality, hospital discharges and birth defects were reported higher than neighbouring areas and other references

    CRISPR-Cas and its wide-ranging applications: from human genome editing to environmental implications, technical limitations, hazards and bioethical issues

    Get PDF
    The CRISPR-Cas system is a powerful tool for in vivo editing the genome of most organisms, including man. During the years this technique has been applied in several fields, such as agriculture for crop upgrade and breeding including the creation of allergy-free foods, for eradicating pests, for the improvement of animal breeds, in the industry of bio-fuels and it can even be used as a basis for a cell-based recording apparatus. Possible applications in human health include the making of new medicines through the creation of genetically modified organisms, the treatment of viral infections, the control of pathogens, applications in clinical diagnostics and the cure of human genetic diseases, either caused by somatic (e.g., cancer) or inherited (mendelian disorders) mutations. One of the most divisive, possible uses of this system is the modification of human embryos, for the purpose of preventing or curing a human being before birth. However, the technology in this field is evolving faster than regulations and several concerns are raised by its enormous yet controversial potential. In this scenario, appropriate laws need to be issued and ethical guidelines must be developed, in order to properly assess advantages as well as risks of this approach. In this review, we summarize the potential of these genome editing techniques and their applications in human embryo treatment. We will analyze CRISPR-Cas limitations and the possible genome damage caused in the treated embryo. Finally, we will discuss how all this impacts the law, ethics and common sense

    Early-stage dynamics of metallic droplets embedded in the nanotextured Mott insulating phase of V2 O3

    Get PDF
    Unveiling the physics that governs the intertwining between the nanoscale self-organization and the dynamics of insulator-to-metal transitions (IMTs) is key for controlling on demand the ultrafast switching in strongly correlated materials and nanodevices. A paradigmatic case is the IMT in V2O3, for which the mechanism that leads to the nucleation and growth of metallic nanodroplets out of the supposedly homogeneous Mott insulating phase is still a mystery. Here, we combine x-ray photoemission electron microscopy and ultrafast nonequilibrium optical spectroscopy to investigate the early-stage dynamics of isolated metallic nanodroplets across the IMT in V2O3 thin films. Our experiments show that the low-temperature monoclinic antiferromagnetic insulating phase is characterized by the spontaneous formation of striped polydomains, with different lattice distortions. The insulating domain boundaries accommodate the birth of metallic nanodroplets, whose nonequilibrium expansion can be triggered by the photoinduced change of the 3d-orbital occupation. We address the relation between the spontaneous nanotexture of the Mott insulating phase in V2O3 and the timescale of the metallic seeds growth. We speculate that the photoinduced metallic growth can proceed along a nonthermal pathway in which the monoclinic lattice symmetry of the insulating phase is partially retained

    Ultrafast orbital manipulation and Mott physics in multi-band correlated materials

    Get PDF
    Multiorbital correlated materials are often on the verge of multiple electronic phases (metallic, insulating, superconducting, charge and orbitally ordered), which can be explored and controlled by small changes of the external parameters. The use of ultrashort light pulses as a mean to transiently modify the band population is leading to fundamentally new results. In this paper we will review recent advances in the field and we will discuss the possibility of manipulating the orbital polarization in correlated multi-band solid state systems. This technique can provide new understanding of the ground state properties of many interesting classes of quantum materials and offers a new tool to induce transient emergent properties with no counterpart at equilibrium. We will address: the discovery of high-energy Mottness in superconducting copper oxides and its impact on our understanding of the cuprate phase diagram; the instability of the Mott insulating phase in photoexcited vanadium oxides; the manipulation of orbital-selective correlations in iron-based superconductors; the pumping of local electronic excitons and the consequent transient effective quasiparticle cooling in alkali-doped fullerides. Finally, we will discuss a novel route to manipulate the orbital polarization in a a k-resolved fashion

    Chitosan gated organic transistors printed on ethyl cellulose as a versatile platform for edible electronics and bioelectronics

    Get PDF
    Edible electronics is an emerging research field targeting electronic devices that can be safely ingested and directly digested or metabolized by the human body. As such, it paves the way to a whole new family of applications, ranging from ingestible medical devices and biosensors, to smart labelling for food quality monitoring and anti-counterfeiting. Being a newborn research field, many challenges need to be addressed to realize fully edible electronic components. In particular, an extended library of edible electronic materials is required, with suitable electronic properties depending on the target device and compatible with large-area printing processes, to allow scalable and cost-effective manufacturing. In this work, we propose a platform for future low-voltage edible transistors and circuits that comprises an edible chitosan gating medium and inkjet printed inert gold electrodes, compatible with low thermal budget edible substrates, such as ethylcellulose. We report the compatibility of the platform, characterized by critical channel features as low as 10 ”m, with different inkjet printed carbon-based semiconductors, including biocompatible polymers present in the picograms range per device. A complementary organic inverter is also demonstrated with the same platform as a proof-of-principle logic gate. The presented results offer a promising approach to future low-voltage edible active circuitry, as well as a testbed for non-toxic printable semiconductors

    Nanoscale self-organization and metastable non-thermal metallicity in Mott insulators

    Get PDF
    Mott transitions in real materials are first order and almost always associated with lattice distortions, both features promoting the emergence of nanotextured phases. This nanoscale self-organization creates spatially inhomogeneous regions, which can host and protect tran- sient non-thermal electronic and lattice states triggered by light excitation. Here, we combine time-resolved X-ray microscopy with a Landau-Ginzburg functional approach for calculating the strain and electronic real-space configurations. We investigate V2O3, the archetypal Mott insulator in which nanoscale self-organization already exists in the low-temperature monoclinic phase and strongly affects the transition towards the high-temperature corundum metallic phase. Our joint experimental-theoretical approach uncovers a remarkable out-of- equilibrium phenomenon: the photo-induced stabilisation of the long sought monoclinic metal phase, which is absent at equilibrium and in homogeneous materials, but emerges as a metastable state solely when light excitation is combined with the underlying nanotexture of the monoclinic lattice
    corecore