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Abstract In this paper, we present a novel nonparametric approach for multivari-
ate analysis of two-way crossed factorial design based on NonParametric Combi-
nation applied to Synchronized Permutation tests. This nonparametric hypothesis
testing procedure not only allows to overcome the shortcomings of MANOVA test
like violation of assumptions such as multivariate normality or covariance homo-
geneity, but, in an extensive simulation study, reveals to be a powerful instrument
both in case of small sample size and many response variables. We contextualize its
application in the field of industrial experiments and we assume a linear additive
model for the data set analysis. Indeed, the linear additive model interpretation
well adapts to the industrial production environment because of the way control
of production machineries is implemented. The case of small sample size reflects
the frequent needs of practitioners in the industrial environment where there are
constraints or limited resources for the experimental design. Furthermore, an in-
crease in rejection rate can be observed under alternative hypothesis when the
number of response variables increases with fixed number of observed units. This
could lead to a strategical benefit considering that in many real problems it could
be easier to collect more information on a single experimental unit than adding a
new unit to the experimental design. An application to industrial thermoforming
processes is useful to illustrate and highlight the benefits of the adoption of the
herein presented nonparametric approach.

Keywords Synchronized Permutation · Non-parametric tests · Combining
function · NPC tests · Multivariate tests · MANOVA

Arboretti Rosa
Civil, Environmental and Architectural Engineering
University of Padova - Padova - Italy
E-mail: rosa.arboretti@unipd.it

Ceccato Riccardo · Corain Livio · Ronchi Fabrizio · Salmaso Luigi
Department of Management and Engineering
University of Padova - Vicenza - Italy



2 Rosa Arboretti et al.

1 Introduction

Industrial experiments are commonly based on factorial designs. Design of Ex-
periment (DOE) is popular in different fields of engineering as for instance for
bio-fuel production [36], for industrial production practices [17,35], for machines’
production process [19], for alternative raw materials experimentation [18], or for
the use of Coordinate Measuring Machines for quality control [34]. The two-way
crossed factorial design is a common design used in the exploratory phase. Thanks
to two-way multi-level design, practitioners can assess the impact on response vari-
ables of two factors they can control during the experiment and of their interaction
according to the assumed model.

In many industrial applications (and applied research fields) it is common the
need to compare multivariate population obtained in advanced factorial designs.
There are manufacturing processes where treatments or control factors in produc-
tion processes impact on several relevant variables simultaneously [32,24,7,25]. In
these cases an overall test is useful to determine for instance whether there is a
significant difference on final product or not. Observed data are usually analized
using the multivariate analysis of variance (MANOVA) methods. Unfortunately
parametric methods rely on assumptions such as multivariate normality and co-
variance homogeneity, but these prerequisites may be not realistic for several real
problems.

How to overcome the violation of MANOVA assumptions has been investigated
and nonparametric methods for multivariate inferential tests have been developed.
One of the approaches is based on the generalization to the multivariate case [26,6]
of the univariate comparison between the group-wise distribution functions Fi and
the reference distribution function H = 1

N

∑
i niFi that is the pooled distribution

[20,21]. In these cases the null hypotheses are formulated in terms of distribution
functions. Other approaches are rank-based as for instance in [15,4,5,13,14] but
they are for large number of factor levels or for large sample size.

We propose a novel nonparametric approach based on NonParametric Combi-
nation (NPC) [31] applied to Synchronized Permutation (SP) tests [3,2] for two-
way crossed factorial design assuming a linear additive model. Indeed, the linear
additive model interpretation well adapts to the industrial production environ-
ment because of the way control of production machineries is implemented. This
approach overcomes the shortcomings of MANOVA with the only mild condition
of the data set to be analyzed taking values on a multi-dimensional distribution
belonging to a nonparametric family of non-degenerate probability distributions.
It well works with even only two levels per factor and a small sample size. The case
of small sample size reflects the frequent needs of practitioners in the industrial
environment where there are constraints or limited resources for the experimental
design. Furthermore it allows to formulate test hypotheses in more familiar terms
for practitioners such as factor effect size. Indeed, we agree with Lakens [22] that
”Effect sizes are the most important outcome of empirical studies. Most articles on
effect sizes highlight their importance to communicate the practical significance of
results”.

A simulation design with fixed factor effects δ and fixed variance σ of data set
distributions have been performed in order to evaluate the rejection rate of the
NPC applied to SP tests under alternative Hypothesis H1 in the range of interest
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of significance levels 0 ≤ α ≤ 0.1, and in order to compare it with the classical
MANOVA test.

A real case study is useful to highlight the benefits of the adoption of the
herein presented nonparametric approach in industrial experiments with a small
sample size and non-normal data distribution. A two-way two-level design is used
to understand whether two control factors and their interaction were significant
or not in a project of innovation of the production system of a thermoformed
packaging.

The remainder of the paper is organized as follows. We describe Synchronized
Permutation methods (Section 2) and NonParametric Combination (Section 3) in
a two-way factorial design and the two steps algorithm to apply NPC to SP. Next,
the simulations design is described (Section 4) and results are presented (Section
5). Then, a real case study on industrial experiment is presented (Section 6) and,
finally, we discuss the results of simulation and make further comments (Section
7).

2 Synchronized Permutation methods

The synchronized permutation methods is herein illustrated. We assume the linear
additive model of a balanced two-way factorial crossed design:

Yijk = µ+αi+βj+(αβ)ij+εijk, i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . , n, (1)

where µ is the overall mean, αi is the effect of level i of factor A, βj is the effect of
level j of factor B, (αβ)ij is the effect of interaction between factor A at level i and
factor B at level j, I and J are the number of levels of factor A and B respectively,
and εijk is the error term. The number of replicates of the balanced design is n
and the mean of error term is E(εijk) = 0 for each factor level combination. The
total number of observations is N =

∑
i

∑
j n = I · J · n

The side conditions are:∑
i

αi = 0;
∑
j

βj = 0;
∑
i

(αβ)ij = 0 ∀j;
∑
j

(αβ)ij = 0 ∀i. (2)

The null hypotheses of no-main effect of factor A, no-main effect of factor B
and no-interaction effect between factors A and B are:

H
(A)
0 : αi = 0 ∀i,

H
(B)
0 : βj = 0 ∀j and

H
(AB)
0 : (αβ)ij = 0 ∀i, j,

(3)

respectively. In vector notation, the data can be written as Y = (Yijk)
′

= (Y111, . . . , YIJn)
′
.

And the null hypotheses can be written in terms of contrasts as:

H
(A)
0 : CAµ = 0,

H
(B)
0 : CBµ = 0 and

H
(AB)
0 : CABµ = 0,

(4)
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where µ = (µ11, . . . , µIJ)
′
, µij = E(Yijk) = µ + αi + βj + (αβ)ij and CM is a

contrast matrix for M ∈ {A,B,AB}
Synchronized permutation is developed along two basic concepts. The first is

that permutations of observations between two levels of a factor can be made only
holding the level of remaining factors in the model constant. For instance, consider
the case of a two-way design with factor level combinations A1B1, A1B2, A2B1

and A2B2. To test the significance of main effect A, observations will be exchanged
between groups A1B1 and A2B1, and between A1B2 and A2B2. That is, the level
of B is kept constant when performing the test on factor A, in the former case
such level is 1, in the latter it is 2. The second basic concept in synchronized
permutation tests is exchanging the same number of units within each pair of the
considered groups [3].

According to Basso et al. [3,2] the test statistics for the main factor A in the
two-way design is:

TA =
∑
i<s

∑
j

Tis|j

2

, where

Tis|j =
∑
k

Yijk −
∑
k

Ysjk, i, s ∈ {1, . . . , I}; j ∈ {1, . . . , J}

(5)

The outer sum is made over all possible pairs of levels 1 ≤ i ≤ s ≤ I and the inner
sum is squared to avoid the cancellation of any of the contributions of effects of
factor A.

Similarly for factor B:

TB =
∑
j<h

[∑
i

Tjh|i

]2
, where

Tjh|i =
∑
k

Yijk −
∑
k

Yihk, i ∈ {1, . . . , I}; j, h ∈ {1, . . . , J}
(6)

The statistics for interaction between factor A and factor B is given by the sum-
mation of two contributions along the two factors:

TAB =a TAB +b TAB , where

aTAB =
∑
i<s

∑
j<h

[
Tis|j − Tis|h

]2
, and

bTAB =
∑
j<h

∑
i<s

[
Tjh|i − Tjh|s

]2
, i, s ∈ {1, . . . , I}; j, h ∈ {1, . . . , J}

(7)

The statistics for main factors and interaction are uncorrelated.

Then p-value is calculated as the proportion of permutations for which test
statistics of permuted data set are greater or equal to the test statistic of the
original data set.

There are two ways to obtain a synchronized permutation, namely Constrained
Synchronized Permutation (CSP) [33] and Unconstrained Synchronized Permuta-
tion (USP) [33].
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2.1 Constrained Synchronized Permutation (CSP)

In the CSP the same permutation is applied in all couples of groups given the initial
order of observations. For instance, in the two way design if a permutation consists
in exchanging the second observation of group AiBj with the first observation of
group AsBj when testing main effect A, then same permutation has to be applied
to groups AiBh and AsBh. It is recommended to randomize observations within
each group at the beginning before performing the permutation test.

As a result of the application of the same permutation between all possible pairs
of groups, the number of possible ways to exchange units depends only on number
of replicates n in the balanced design. The total number of possible permutations
of CSPs is:

Ccsp =

(
2n

n

)
(8)

Thus, according to the way the p-value is calculated, the minimum achievable
significance error is αmin = 2 × (Ccsp)−1. If n is too small, CSP could give a
minimum achieved significance level higher than the desired type I error.

2.2 Unconstrained Synchronized Permutation (USP)

USP, unlike CSP, can apply different permutations in the various pairs of groups.
However, the basic principle of synchronized permutations of exchanging the same
number of observations has to be respected. The algorithm provided by Basso et
al. [3] guarantees the values of the test statistic to be equally likely. This proce-
dure allows to overcome those cases in which the test statistic is not uniformly
distributed.

The total number of possible permutations of USPs depends on a larger number
of parameters of dataset respect to CSP. The formula is more complex and there
are two cases:

CoUSP =

(n−1)/2∑
ν=0

(
n

ν

)J×I(I−1)

when n is odd,

CeUSP =

n/2−1∑
ν=0

(
n

ν

)J×I(I−1)

+

1

2

(
n

n/2

)2J
I(I−1)/2

when n is even,

(9)

where ν is the number of units exchanged between two groups. The cardinality of
the permuted statistics rapidly increases with n, I and J . The minimum signifi-
cance level that can be achieved is proportional to the inverse of the cardinality
in Equation 9. Thus USP is not expected to suffer of a minimum significance level
higher than the desired type I error. However, USP is computationally more in-
tensive compared to CSP, and it is recommended in the case of small number of
replicates.



6 Rosa Arboretti et al.

3 NonParametric Combination (NPC)

The NonParametric Combination is a natural extension of permutation testing to
a variety of multivariate problems. Permutation tests are, in general, distribution-
free and non-parametric [11], and have good properties such as exactness, unbi-
asedness and consistency [31,16,9,10].

To illustrate the NPC we assume the same linear additive model and use the
same notation as in Section 2. The notation has to be extended to the multivari-
ate case introducing V observed variables that can be independent or dependent.
Because of the objective of this study, we focus on continuous variables. Let us
denote a V -dimensional data set by Y = {Y i,j,k, i = 1, . . . , I, j = 1, . . . , J, k =
1, . . . , n} = {Yi,j,k,v, i = 1, . . . , I, j = 1, . . . , J, k = 1, . . . , n, v = 1, . . . , V }. Ac-
cording to the extended notation, the multivariate linear additive model of a bal-
anced two-way factorial crossed design is:

Y i,j,k = µ+αi+βj+(αβ)ij+εijk, i = 1, . . . , I; j = 1, . . . , J ; k = 1, . . . , n, (10)

where, in the multivariate case, µ is the vector of overall means, αi is the vector of
effects of level i of factor A, βj is the vector of effects of level j of factor B, (αβ)ij
is the vector of effects of interaction between factor A at level i and factor B at
level j, I and J are the number of levels of factor A and B respectively, and εijk
is the vector of error terms. The vector of the means of error terms is E(εijk) = 0
for each factor level combination, and Σ is the variance/covariance matrix of the
V observed variables.

Adapted from Pesarin and Salmaso [31] to the design of interest in this study,
main assumptions regarding the data structure, hypotheses being tested in NPC
contexts, and set of partial tests are:

– (i) The response Y takes its values on a V -dimensional distribution, Di,j ∈
D, i = 1, . . . , I, j = 1, . . . , J , belonging to a (possibly not specified) nonpara-
metric family D of non-degenerate probability distributions.

– (ii) The null hypothesis refers to equality of effect vectors of the V variables
in the I groups for factor A, the J groups for factor B and the I · J groups for
interaction between factor A and factor B:

H
(A)
0 : αi = 0 ∀i,

H
(B)
0 : βj = 0 ∀j and

H
(AB)
0 : (αβ)ij = 0 ∀i, j,

(11)

The null hypotheses H
(A)
0 and H

(B)
0 imply that the V -dimensional data vectors

in Y are exchangeable with respect to the I and J groups respectively.

Considering factor A, H
(A)
0 is supposed to be properly and equivalently broken

down into V sub-hypotheses H
(A)
0v , v = 1, . . . , V , each appropriate for a partial

(univariate) aspect of interest. Therefore, H
(A)
0 (multivariate) is true if all the

H
(A)
0v are jointly true; and so it may be written as:

H
(A)
0 :

{
V⋂
v=1

H
(A)
0v

}
(12)
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H
(A)
0 is also called global or overall null hypothesis for factor A, and H

(A)
0v , v =

1, . . . , V are called the partial null hypotheses. Similarly H
(B)
0 and H

(AB)
0 are

supposed to be properly and equivalently broken down into V sub-hypotheses,
giving:

H
(B)
0 :

{
V⋂
v=1

H
(B)
0v

}
,

H
(AB)
0 :

{
V⋂
v=1

H
(AB)
0v

} (13)

– (iii) Considering factor A, the alternative hypothesis states that at least one

of the partial null hypotheses H
(A)
0v is not true. Hence, the alternative may be

represented by the union of V partial alternatives hypotheses,

H
(A)
1 :

{
V⋃
v=1

H
(A)
1v

}
, (14)

stating that H
(A)
1 is true when at least one partial alternative hypotheses

H
(A)
1v is true. In this context, H

(A)
1 is called the global or overall alternative

hypothesis. Based on the same rationale, we have:

H
(B)
1 :

{
V⋃
v=1

H
(B)
1v

}
,

H
(AB)
1 :

{
V⋃
v=1

H
(AB)
1v

} (15)

– (iv) T = T (Y ) represents a V -dimensional vector of test statistics, V ≥ 2,
in which the v-th component Tv = Tv(Y ), v = 1, . . . , V , represents the non-
degenerate v-th partial univariate test appropriate for testing sub-hypothesis
H0v against H1v. In the NPC context, without loss of generality, all partial
tests are assumed to be marginally unbiased, consistent and significant for large
values.

The above set of mild conditions should be jointly satisfied. Concerning the
partial univariate test, we note that Synchronized Permutation test respects re-
quirements of point (iv) (for more details see [3]). Without loss of generality, from
here on we intend the partial univariate test and related statistics to be the Syn-
chronized Permutation test and its statistics.

When developing a multivariate hypothesis testing procedure, a global answer
including several response variables is required, and the main point is how to com-
bine the information related to the V variables into one global test. The key idea

in the NPC to test the global null hypoteses H
(A)
0 , H

(B)
0 and H

(AB)
0 is to combine

through an appropriate combining function the partial (univariate) tests which
are focused on the v-th component variable. Basically, NPC approach corresponds
to a method of analysis made up of two phases. In the first phase the univariate
permutation tests are performed. In the second phase the p-values obtained in the
first phase are combined in one second-order global (multivariate) test:



8 Rosa Arboretti et al.

T ′′ = φ (λ1, . . . , λV ) (16)

where T ′′ is the multivariate statistic, φ is the combining function and λv, v =
1, . . . , V is the p-value of the v-th partial univariate test. The test is performed by
a continuous, non-increasing and univariate real function φ : (0, 1)V →R1.

Various combining functions can be suitable for this purpose, but according to
Pesarin and Salmaso [31], in order to be suitable for test combination all combining
functions φ must satisfy the following properties (see also [27–29] and [12]):

– (i) The function φ must be non-increasing in each argument: φ (. . . , λv, . . . ) ≥
φ (. . . , λ′v, . . . ) if λv < λ′v, v ∈ {1, . . . , V }.

– (ii) The function φ must attain its supremum value φ̄, possibly not finite,
even when only one argument attains zero: φ (. . . , λv, . . . ) → φ̄ if λv → 0,
v ∈ 1, . . . , V .

– (iii) ∀α > 0, the critical value T ′′α of every φ is assumed to be finite and strictly
smaller than φ̄ : T ′′α < φ̄.

In the simulation study we present in Sections 4 and 5, we selected and com-
pared performances of three combining functions that satisfy the required proper-
ties, namely:

– (i) The Fisher omnibus combining function is based on the statistic:

T ′′F = −2 ·
∑

v
log(λv) (17)

If the V partial test statistics are independent and continuous, then in the null
hypothesis T ′′F follows a central χ2 distribution with 2V degrees of freedom.

– (ii) The Liptak combining function is based on the statistic:

T ′′L =
∑

v
Φ−1(1− λv) (18)

where Φ is the standard normal cumulative distribution function (CDF). If the
V partial tests are independent and continuous, then in the null hypothesis T ′′L
is normally distributed with mean 0 and variance V (see [23]).

– (iii) The Tippett combining function is based on the statistic:

T ′′T = max1≤v≤V (1− λv) (19)

significant for large values. Its null distribution, if the V tests are independent
and continuous, behaves according to the largest of V random values from the
uniform distribution in the open interval (0, 1).

At this stage, once defined data set structure, null and alternative hypotheses,
univariate test statistic, combining functions and various assumptions and prop-
erties required in the NPC context, we herein illustrate the two phases algorithm
to perform the NPC test in the framework of the Conditional Monte Carlo Proce-
dure (CMCP). We resort to CMCP because in most real problems computational
difficulties arise in calculating the conditional permutation space when the sample
size is large enough, therefore it could be not possible to calculate the exact p-
value λv of the observed statistic T obsv in a reasonable amount of time. It is worth
noting that in the multivariate data set CMCP apply permutations of individual
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data vectors, so that all underlying dependence relations which are present in the
component variables are preserved.

For the sake of clearness and simplicity, the algorithm is presented referring
to a general test of hypothesis. The reader should take in mind that it has to be
repeated three times in a two-way factorial design to test the three global null

hypotheses H
(A)
0 , H

(B)
0 and H

(AB)
0 .

The first phase of the algorithm to perform NPC test is devoted to the esti-
mation of V -variate distribution of T and the p-values of the univariate tests:

– (i) Calculate the V -dimensional vector of the observed values of test statistics
T : T obs = T (Y ) =

[
T obsv = Tv(Y ), v = 1, . . . , V

]
.

– (ii) Consider a random permutation Y ∗ of Y and calculate the vector of statis-
tics T ∗ = T (Y ∗) = [T ∗v = Tv(Y ∗), v = 1, . . . , V ].

– (iii) Repeat the previous step C times independently. The set of CMC results
{T ∗

c , c = 1, . . . , C} is thus a random sampling from the permutation V -variate
distribution of vector of test statistics T .

– (iv) According to Synchronized Permutation test, the p-values of the observed
values are calculated in each univariate test as the proportion of permutations
for which test statistics of permuted data set are greater or equal to the test
statistic of the original data set:

λ̂obsv =
C∑
c=1

I(T ∗cv ≥ T obsv )/C, v = 1, . . . , V, (20)

where I(·) is the indicator function. The result is {λ̂obs1 , . . . , λ̂obsV }.
– (v) The p-values of each of the C elements of the set of permutations carried

out at point (iii) are calculated in each univariate test in similar way as point
(iv). The result is {λ̂∗c1, . . . , λ̂∗cV }, c = 1, . . . , C.

The second phase of the algorithm to perform NPC test is devoted to the
combination of results of the first phase to compute a second-order global (multi-
variate) test for the overall null hypothesis:

– (i) The combined observed value of the second-order test is calculated by ap-
plying a combining function to the p-values of the observed values:

T ′′obs = φ(λ̂obs1 , . . . , λ̂obsV ). (21)

– (ii) The c-th combined value of the V -dimensional vector of p-values of the c-th
element of the set of permutations is then calculated by:

T ′′∗c = φ(λ̂∗c1, . . . , λ̂
∗
cV ), c = 1, . . . , C. (22)

– (iii) Hence, the p-value of the combined test T ′′ is estimated as

λ̂′′φ =
C∑
c=1

I(T ′′∗c ≥ T ′′obs)/C. (23)

– (iv) If λ̂′′φ ≤ α, the global null hypothesis H0 is rejected at significance level α.
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4 Simulations Design

A Monte Carlo simulation study is performed to evaluate the performances of
the application of NPC methods to the SP tests described in Sections 3 and 2
respectively.

Data set for simulation are generated according to the cell mean model of a
multivariate two-way balanced crossed factorial design (factor A and factor B).
Consistently with notation in Section 3:

Y i,j,k = µ+ αi + βj + (αβ)ij + εijk, (24)

i = 1, . . . , I, j = 1, . . . , J , k = 1, . . . , n, v = 1, . . . , V , where I and J are the
number of levels of factor A and B respectively, n is the number of replicates and
V is the number of response variables. As the factorial design is balanced, number
of replicates refers to each factor level combination. In this setup, the vector of
overall means µ = 0 and the interaction is given by the product of effect of the
two factors.

Four distributions are used to generate the error term ε. Three are symmetric:
normal, Laplace and student’s t with 2 degrees of freedom (d.o.f.). One is skewed:
lognormal. We consider only homoscedastic case.

Some parameters in the model are fixed:

– The factor effect is δ = 1 for both factors. According to the adopted simulation
design, the maximum difference between the means of two levels due to a single
factor effect is δ. In the case of two levels of factor A we have α1 = 0.5 and
α2 = −0.5, while in the case of three levels we set α1 = 0.5, α2 = 0 and
α3 = −0.5. The same for factor B: β1 = 0.5, β2 = −0.5, and β1 = 0.5, β2 = 0,
β3 = −0.5 in the case of two and three levels respectively.

– The variance of distributions is fixed as well: σ2 = 1

Some other parameters in the model are varied:

– The number of levels of factors: I, J = 2, 3. We consider two possible settings:
(I, J) ∈ {(2, 2), (3, 3)}, so the two factors have the same number of levels in
both settings.

– The number of response variables: V = 2,4,8, where the number of active
variables (under the alternative hypotesis) is 2 when V=2, is 2 when V=4 and
is 4 when V=8.

– The dependence and independence among response variables. In case of in-
dependence, the variance/covariance matrix is the identity matrix IV where
σrc = 0, ∀r, c = 1, . . . , V , r 6= c. In case of dependence, the variance/covariance
matrix is ΣV where σrc = 0.5, ∀r, c = 1, . . . , V , r 6= c.

– The number of replicates: n = 3, 5.

It is well known that the number of replicates affects positively the power of the
tests as it increases. Studying the performance in case of low number of replicates
reflects the frequent needs of practitioners in the industrial environment where
there are constraints or limited resources for the experimental design. The SP
tests (CSP, USP) combined with the three combining functions (Fisher, Liptak
and Tippett) of NPC methods will be investigated in the 24 settings defined as
combination of the varying parameters, and will be compared with the MANOVA
test along the four distribution functions (normal, Laplace, lognormal and Student



Multivariate small sample tests for two-way designs 11

t). Furthermore, some simulations with 100 and 50 response variables (50 and 25
active variables respectively) are run with covariance = 0.5, number of levels =
2 and number of replicates = 5, to investigate the behavior of NPC applied to
Synchronized Permutation tests with an high number of response variables.

All simulations are performed in R (version 3.4.0; R Development Core Team
(2017)). The number of simulations is nsim = 10000, and the number of permu-
tations for CSP and USP is nperm = 2000.

5 Simulations Results

In this section main results of the simulation study are presented. The graphs have
been obtained plotting the rejection rate of the test (y axis) versus the significance
level (x axis). The objective is to compare the performance of the NPC combining
functions applied to the permutation tests in the range of interest of significance
level 0 ≤ α ≤ 0.1. Because of the simmetry of the simulation design, we have same
results for factor A and factor B.

In Figure 1 it is clear that in case of non normal distribution of errors, the
MANOVA test does not respect the α level under the null hypothesis unlike the
NPC tests. There is a discrepancy between the MANOVA curve and the line of

no-discrimination when H
(A)
0 is true, while in general NPC tests’ curves are very

close to the hypothetical continuous uniform distribution with every combining
function for the main factor (factor A).

The respect of the α level under the null hypothesis in the analysis of inter-
action effect is more challenging for all the considered tests. Under non normality
MANOVA shows a clear departure from no-discrimination line. The multivariate
combination of USP test reveals to be unreliable as well. The most performing test
for the interaction effect in the model assumed is the Liptak combination of CSP
test (Figure 2).

In Section 2 the issue of the minimum achievable significance level related to
the cardinality of the univariate permutation tests is shown both for CSP and
USP. The curves of NPC of Synchronized Permutation tests reflect the same issue
with an initial plateau with rejection rate = 0. A clear example is given by the
case of CSP and a data set with (I, J) = (2, 2) levels for the factors A and B
respectively and n = 3 replicates. The cardinality of the univariate test is Ccsp =(
2n
n

)
=
(
6
3

)
= 20 and the univariate minimum achievable significance error is

αmin = 2 × (Ccsp)−1 = 0.1. The set of exact p-values that can result under such
conditions is a set of 10 values at step of 0.1: Sp−values = {0.1, . . . , 1} for each
univariate test. The application of a combining function gives a set of 10 values
for the statistic T ′′ used to compute the p-value of the second-order test λ̂′′φ. The
cumulative distribution function of the p-values is shown in Figure 3 (a) where we
can recognize 10 steps. Recall that we are using a CMC procedure with a number
of permutations large enough so that the length of the steps is quite regular thanks
to the fact that the likelihood of the values of the statistic T ′′ is the same. A zoom
in Figure 3 (b) shows clearly the initial plateau with rejection rate = 0. The NPC
tests are affected by the minimum achievable significance level of the permutation
test they are applied to. All the graphs referred to CSP in this section show a
small initial plateau. This fact reveals to be a shortcoming only in the case of CSP
and 3 replicates considering the usual significance levels α = 0.01 and α = 0.05.
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(a) Normal distribution of errors. (b) Laplace distribution of errors.

(c) Lognormal distribution of errors. (d) T (2 d.o.f) distribution of errors.

Fig. 1: Factor A, behaviour of tests under null hypothesis. Rejection rate at dif-
ferent values of significance level α (x axis). NPC function = Fisher; number of
responses = 4; number of levels = 2; covariance = 0; number of replicates = 5.

The capability of NPC applied to SP tests to detect the effect of the main
factor under H1 in the assumed model is in general good. Simulation results show
that NPC applied to USP and CSP partial tests gives high values of power (rejec-
tion rate) both with independent and dependent response variables [1], and both
with low number and high number of response variables compared to MANOVA
(Figures 4, 5). In general NPC applied to USP partial tests performs better with
all distribution of errors, while NPC of CSP partial tests and MANOVA have in
some cases similar performances with Laplace and student’s t distribution of er-
rors. NPC tests show a better performance compared to MANOVA even in case of
normal distribution of errors with the power that can be even more than double
at α < 0.05 significance level (Figure 4).

In the interaction analysis, the observed rejection rate under H1 is lower than in
the main factor analysis (Figure 6). This result is consistent with the model used to
generate data set for simulation study where interaction is given by the product
of the levels of the factors. In general, the NPC of CSP partial tests performs
better than MANOVA and USP, both with independent and dependent response
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(a) Lognormal distribution of errors. (b) T (2 d.o.f) distribution of errors.

Fig. 2: Interaction AB, behaviour of tests under null hypothesis. Rejection rate at
different values of significance level α (x axis). NPC function = Liptak; number of
responses = 4; number of levels = 2; covariance = 0; number of replicates = 5.

(a) Rejection rate ∈(0,1), Signif. level
∈(0,1).

(b) Zoom of graph in (a).

Fig. 3: Factor A, effect of cardinality of Synchronized Permutations on minimum
significance level of NPC. Rejection rate at different values of significance level α
(x axis). NPC function = Fisher; number of responses = 4; distribution of errors
= T (2 d.o.f) ; number of levels = 2; covariance = 0.5; number of replicates = 3.
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(a) Normal distribution of errors. (b) Laplace distribution of errors.

(c) Lognormal distribution of errors. (d) T (2 d.o.f) distribution of errors.

Fig. 4: Factor A, comparison of Non-Parametric methods and MANOVA. Rejection
rate at different values of significance level α (x axis). NPC function = Fisher;
number of responses = 8; number of levels = 3; covariance = 0; number of replicates
= 5.

variables, and both with low number and high number of response variables. The
NPC of USP partial tests shows a lower power. In some cases with a factor with
two levels, MANOVA and NPC applied to CSP have similar rejection rate, with
MANOVA performing better with Laplace distribution of errors.

The increase of number of levels of factors A and B from (I, J) = (2, 2) to
(I, J) = (3, 3) has a positive effect on the rejection rate under H1 (Figure 7) even
if the maximum δ = 1 between factors is constant.

The three combining functions Fisher, Liptak and Tippett show in general good
performances. Nevertheless, Fisher and Tippett functions give higher rejection rate
compared to Liptak, with Tippett function’s curve showing small steps (Figure 8).

An increase in rejection rate can be observed when the number of response
variables increases with fixed number of observed units, meaning an higher power
of the test in detecting a factor effect under H1 (Figure 9, 10). This phenomenon is
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(a) Normal distribution of errors. (b) Laplace distribution of errors.

(c) Lognormal distribution of errors. (d) T (2 d.o.f) distribution of errors.

Fig. 5: Factor A, comparison of Non-Parametric methods and MANOVA. Rejection
rate at different values of significance level α (x axis). NPC function = Fisher;
number of responses = 2; number of levels = 3; covariance = 0.5; number of
replicates = 5.

known as finite sample consistency and refers to a peculiar property of multivari-
ate combination-based inferences: the power of NPC tests for any added variable
monotonically increases if the variable makes larger noncentrality parameter of
the underlying population distribution [31,30]. The positive effect on the power
of the test that can be obtained adding response variables can be strategically
exploited considering that in many real problems it could be easier to collect more
information on a single experimental unit than adding a new unit to the exper-
imental design [8]. The effect of the increase of response variables while keeping
constant the number of observed units couldn’t be investigated for MANOVA test
because of the problem of the loss of degrees of freedom that does not allow to
apply MANOVA test when the number of response variables is larger than the
sample size.
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(a) Normal distribution of errors. (b) Laplace distribution of errors.

(c) Lognormal distribution of errors. (d) T (2 d.o.f) distribution of errors.

Fig. 6: Interaction AB, comparison of Non-Parametric methods and MANOVA.
Rejection rate at different values of significance level α (x axis). NPC function =
Liptak; number of responses = 4; number of levels = 3; covariance = 0.5; number
of replicates = 5.

6 A Real Case study on an Industrial Experiment

An industrial experiment according to a two-way two-levels design in the engineer-
ing field provides a useful example of the analysis performed using NPC combined
with Synchronized Permutations on a dataset with two responses.

The production system of plastic thermoformed packaging is complex, and it is
controlled by several factors [32]. In order to innovate the system, the impact of two
factors and of their interaction has to be assessed for values of levels outside their
usual range. One factor is the temperature of the process (factor A) and the other
factor is the pace of production line (factor B). The packaging is composed by two
separate and different-in-shape chambers. The evaluation of the strength of the
packaging is done observing the pressure needed to break the packaging by a burst
test [bar]. Each chamber is tested separately, so there are two response variables.
Five replicates for each factor level combination and for each response variable
have been tested. Data collected violate assumption of normality (Table 1), and
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Fig. 7: Factor A, performance at different number of levels, 2 and 3. Rejection
rate at different values of significance level α (x axis). NPC function = Fisher;
distribution of errors = T (2 d.o.f); number of responses = 4; covariance = 0.5;
number of replicates = 5.

(a) Constrained Synchronized Permuta-
tion.

(b) Unconstrained Synchronized Permuta-
tion.

Fig. 8: Factor A, comparison of NPC functions. Rejection rate at different values of
significance level α (x axis). Distribution of errors = Laplace; number of responses
= 8; number of levels = 3; covariance = 0.5; number of replicates = 5.
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(a) Laplace distribution of errors. (b) Lognormal distribution of errors.

Fig. 9: Factor A, effect of increasing number of responses with CSP. Rejection rate
at different values of significance level α (x axis). NPC function = Fisher, number
of levels = 2; covariance = 0.5; number of replicates = 5.

(a) Laplace distribution of errors. (b) Lognormal distribution of errors.

Fig. 10: Factor A, effect of increasing number of responses with USP. Rejection
rate at different values of significance level α (x axis). NPC function = Fisher,
number of levels = 2; covariance = 0.5; number of replicates = 5.

they reveal heteroscedasticity based on the different values of control factors (Table
2).

MANOVA test is not reliable for the analysis of such data set. The NPC
combined with CSP and USP overcome the violation of Manova assumptions. The
results of the test are in Table 3 and 4. Note that interaction effect has been
analized only with NPC applied to CSP because USP doesn’t respect the α level
under the null hypothesis. According to simulation study results, main factor effect
should preferably be assessed using NPC applied to USP. The null hypothesis is
rejected at a significance level α = 0.05. Both the factors and their interaction
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Table 1: Multivariate normality tests

Shapiro-Wilk Henze-Zirkler Royston

Test statistic 0.908 1.374 11.626
p-value 0.058 0.001 0.003

Table 2: Box’s M-test for Homogeneity of Covariance Matrices

Chi-Sq (approx.)

Test statistic 24.576
DF 9

p-value 0.003

Table 3: Constrained Synchronized Permutation (CSP): p-values of the NPC tests

Fisher Liptak Tippett
Temperature 2.60e-02 3.50e-02 2.70e-02
Cycles per minute 1.50e-02 3.30e-02 7.00e-03
Interaction 7.00e-03 7.00e-03 7.00e-03

Table 4: Unconstrained Synchronized Permutation (USP): p-values of the NPC
tests

Fisher Liptak Tippett
Temperature 6.00e-03 1.75e-02 4.00e-03
Cycles per minute 5.00e-04 7.00e-03 5.00e-04

have a significant impact on the final product. A further investigation allowed to
find the setting for the optimal strength of the packaging.

7 Conclusions

The application of NonParametric Combination to Synchronized Permutation
tests to analyze a multivariate two-way factorial design reveals to be a good in-
strument for inferential statistics when assumptions of MANOVA are violated.
Simulation results show that NPC applied to USP and CSP partial tests gives
high values of power (rejection rate) under alternative hypothesis H1 both with
independent and dependent response variables, and both with low number and
high number of response variables compared to MANOVA. In general NPC ap-
plied to USP partial tests performs better for the main factor analysis with all
distribution of errors compared to NPC of CSP partial tests and MANOVA. Its
power varies under the conditions it has been tested in the simulation study, and it
has been observed to be higher than 75% at a significance level α = 0.05 in many
cases. For the interaction analysis we recommend the adoption of NPC of CSP
partial tests with the Liptak combining function because of the higher adherence
of the test to the nominal α level. The Fisher combining function, also referred
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to as omnibus, is in general preferable to the Tippett and the Liptak ones in the
main factor analysis.

A great advantage given by the adoption of these tests is that they well perform
with small sample size. This reflects the frequent needs of practitioners in the
industrial environment where there are constraints or limited resources for the
experimental design. In case of n = 3 replicates we recommend the use of NPC
of USP partial tests for main factor analysis because of the shortcomings of the
minimum achievable significance level related to the cardinality of the univariate
CSP test. The increase of sample size has in general an evident positive effect on
the power of NPC of SP tests. Futhermore the power of the test is improved by
the increase of number of factor levels with the factor effect fixed.

At last, there is an important property of NPC of SP tests that can be ex-
ploited to increase their power: the finite sample consistency. Indeed, an increase
in rejection rate can be observed under alternative hypothesis H1 when the num-
ber of response variables increases with fixed number of observed units. This could
lead to a strategical benefit considering that in many real problems it could be
easier to collect more information on a single experimental unit than adding a new
unit to the experimental design.
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