8 research outputs found

    Use of knowledge regarding LH receptors to improve superstimulatory treatments in cattle

    No full text
    Embryo transfer is a biotechnology that has been used worldwide to increase the production of offspring from female bovines. Treatments to induce multiple ovulations (superovulation) have evolved from superstimulatory protocols that depended upon detection of oestrus to treatments that synchronise follicle growth and ovulation, allowing for improved donor management and fixed-timed AI (FTAI). The protocols associated with FTAI facilitate animal handling and produce at least as many viably embryos as conventional treatment protocols that required detection of oestrus. Recent knowledge regarding LH receptors (LHR) and follicular development can be applied to improve embryo transfer protocols. In fact, improvements in the superstimulatory treatment called the 'P-36 protocol', which include hormones that stimulate LHR, indicate that adjustments related to LHR availability may increase bovine embryo yield compared with conventional protocols based on the detection of oestrus

    Effect of superstimulatory treatments on the expression of genes related to ovulatory capacity, oocyte competence and embryo development in cattle.

    No full text
    Multiple ovulation (superovulation) and embryo transfer has been used extensively in cattle. In the past decade, superstimulatory treatment protocols that synchronise follicle growth and ovulation, allowing for improved donor management and fixed-time AI (FTAI), have been developed for zebu (Bos indicus) and European (Bos taurus) breeds of cattle. There is evidence that additional stimulus with LH (through the administration of exogenous LH or equine chorionic gonadotrophin (eCG)) on the last day of the superstimulatory treatment protocol, called the 'P-36 protocol' for FTAI, can increase embryo yield compared with conventional protocols that are based on the detection of oestrus. However, inconsistent results with the use of hormones that stimulate LH receptors (LHR) have prompted further studies on the roles of LH and its receptors in ovulatory capacity (acquisition of LHR in granulosa cells), oocyte competence and embryo quality in superstimulated cattle. Recent experiments have shown that superstimulation with FSH increases mRNA expression of LHR and angiotensin AT(2) receptors in granulosa cells of follicles >8 mm in diameter. In addition, FSH decreases mRNA expression of growth differentiation factor 9 (GDF9) and bone morphogenetic protein 15 (BMP15) in oocytes, but increases the expression of both in cumulus cells, without diminishing the capacity of cumulus-oocyte complexes to generate blastocysts. Although these results indicate that superstimulation with FSH is not detrimental to oocyte competence, supplementary studies are warranted to investigate the effects of superstimulation on embryo quality and viability. In addition, experiments comparing the cellular and/or molecular effects of adding eCG to the P-36 treatment protocol are being conducted to elucidate the effects of superstimulatory protocols on the yield of viable embryos

    Ovulation rate and its relationship with follicle diameter and gene expression of the LH receptor (LHR) in Nelore cows

    No full text
    The objective was to determine the relationship among the diameter of ovarian follicles, ovulation rate, and gene expression of the LH receptor (LHR) in Nelore cattle. In Experiment 1, ovulation was synchronized in 53 Nelore cows. Three days after ovulation, ovaries were assessed with ultrasonography, all cows were given 6.25 mg LH im, and they were allocated into three groups, according to diameter of their largest ovarian follicle: G1 (7.0-8.0 mm); G2 (8.1-9.0 mm); and G3 (9.1-10.0 mm). For these three groups, ovulation rates were 9, 36, and 90%, respectively, (P < 0.03; each rate differed significantly from the other two). In Experiment 2, granulosa and theca cells were subjected to total RNA extraction, and gene expression of the LHR was determined by RT-PCR. Follicles were allocated in three groups based on their diameter (similar to the Experiment 1), which were denoted Groups A, B, and C. Expression of the LHR gene in granulosa cells was lower in Group A than Group C (P < 0.05). However, there were no significant differences among groups in expression of the LHR gene in theca cells. We concluded that ovulatory capacity in Nelore cattle was related to increased follicular diameter and expression of the LHR gene in granulosa cells. (C) 2012 Elsevier B.V. All rights reserved
    corecore