298 research outputs found
Low-cost real-time motion capturing system using inertial measurement units
Human movement modeling - also referred to as motion-capture - is a rapidly expanding field of interest for medical rehabilitation, sports training, and entertainment. Motion capture devices are used to provide a virtual 3-dimensional reconstruction of human physical activities - employing either optical or inertial sensors. Utilizing inertial measurement units and digital signal processing techniques offers a better alternative in terms of portability and immunity to visual perturbations when compared to conventional optical solutions.
In this paper, a cable-free, low-cost motion-capture solution based on inertial measurement units with a novel approach for calibration is proposed. The goal of the proposed solution is to apply motion capture to the fields that, because of cost problems, did not take enough benefit of such technology (e.g., fitness training centers). According to this goal, the necessary requirement for the proposed system is to be low-cost. Therefore, all the considerations and all the solutions provided in this work have been done according to this main requirement
High-performance parallel analysis of coupled problems for aircraft propulsion
Applications are described of high-performance parallel, computation for the analysis of complete jet engines, considering its multi-discipline coupled problem. The coupled problem involves interaction of structures with gas dynamics, heat conduction and heat transfer in aircraft engines. The methodology issues addressed include: consistent discrete formulation of coupled problems with emphasis on coupling phenomena; effect of partitioning strategies, augmentation and temporal solution procedures; sensitivity of response to problem parameters; and methods for interfacing multiscale discretizations in different single fields. The computer implementation issues addressed include: parallel treatment of coupled systems; domain decomposition and mesh partitioning strategies; data representation in object-oriented form and mapping to hardware driven representation, and tradeoff studies between partitioning schemes and fully coupled treatment
Whole genome survey of coding SNPs reveals a reproducible pathway determinant of Parkinson disease
It is quickly becoming apparent that situating human variation in a pathway context is crucial to understanding its phenotypic significance. Toward this end, we have developed a general method for finding pathways associated with traits that control for pathway size. We have applied this method to a new whole genome survey of coding SNP variation in 187 patients afflicted with Parkinson disease (PD) and 187 controls. We show that our dataset provides an independent replication of the axon guidance association recently reported by Lesnick et al. [PLoS Genet 2007;3:e98], and also indicates that variation in the ubiquitin-mediated proteolysis and T-cell receptor signaling pathways may predict PD susceptibility. Given this result, it is reasonable to hypothesize that pathway associations are more replicable than individual SNP associations in whole genome association studies. However, this hypothesis is complicated by a detailed comparison of our dataset to the second recent PD association study by Fung et al. [Lancet Neurol 2006;5:911–916]. Surprisingly, we find that the axon guidance pathway does not rank at the very top of the Fung dataset after controlling for pathway size. More generally, in comparing the studies, we find that SNP frequencies replicate well despite technologically different assays, but that both SNP and pathway associations are globally uncorrelated across studies. We thus have a situation in which an association between axon guidance pathway variation and PD has been found in 2 out of 3 studies. We conclude by relating this seeming inconsistency to the molecular heterogeneity of PD, and suggest future analyses that may resolve such discrepancies
The impact of the Large Magellanic Cloud on dark matter direct detection signals
We study the effect of the Large Magellanic Cloud (LMC) on the dark matter (DM) distribution in the Solar neighborhood, utilizing the Auriga magneto-hydrodynamical simulations of Milky Way (MW) analogues that have an LMC-like system. We extract the local DM velocity distribution at different times during the orbit of the LMC around the MW in the simulations. As found in previous idealized simulations of the MW-LMC system, we find that the DM particles in the Solar neighborhood originating from the LMC analogue dominate the high speed tail of the local DM speed distribution. Furthermore, the native DM particles of the MW in the Solar region are boosted to higher speeds as a result of a response to the LMC's motion. We simulate the signals expected in near future xenon, germanium, and silicon direct detection experiments, considering DM interactions with target nuclei or electrons. We find that the presence of the LMC causes a considerable shift in the expected direct detection exclusion limits towards smaller cross sections and DM masses, with the effect being more prominent for low mass DM. Hence, our study shows, for the first time, that the LMC's influence on the local DM distribution is significant even in fully cosmological MW analogues
Pyrosequencing for Mini-Barcoding of Fresh and Old Museum Specimens
DNA barcoding is an effective approach for species identification and for discovery of new and/or cryptic species. Sanger sequencing technology is the method of choice for obtaining standard 650 bp cytochrome c oxidase subunit I (COI) barcodes. However, DNA degradation/fragmentation makes it difficult to obtain a full-length barcode from old specimens. Mini-barcodes of 130 bp from the standard barcode region have been shown to be effective for accurate identification in many animal groups and may be readily obtained from museum samples. Here we demonstrate the application of an alternative sequencing technology, the four-enzymes single-specimen pyrosequencing, in rapid, cost-effective mini-barcode analysis. We were able to generate sequences of up to 100 bp from mini-barcode fragments of COI in 135 fresh and 50 old Lepidoptera specimens (ranging from 53–97 year-old). The sequences obtained using pyrosequencing were of high quality and we were able to robustly match all the tested pyro-sequenced samples to their respective Sanger-sequenced standard barcode sequences, where available. Simplicity of the protocol and instrumentation coupled with higher speed and lower cost per sequence than Sanger sequencing makes this approach potentially useful in efforts to link standard barcode sequences from unidentified specimens to known museum specimens with only short DNA fragments
mPSQed: A Software for the Design of Multiplex Pyrosequencing Assays
Molecular-based diagnostic assays are the gold standard for infectious diseases today, since they allow a rapid and sensitive identification and typing of various pathogens. While PCR can be designed to be specific for a certain pathogen, a subsequent sequence analysis is frequently required for confirmation or typing. The design of appropriate PCR-based assays is a complex task, especially when conserved discriminating polymorphisms are rare or if the number of types which need to be differentiated is high. One extremely useful but underused method for this purpose is the multiplex pyrosequencing technique. Unfortunately there is no software available to aid researchers in designing multiplex pyrosequencing assays. Here, we present mPSQed (Multiplex PyroSeQuencing EDitor), a program targeted at closing this gap. We also present the design of an exemplarily theoretical assay for the differentiation of human adenovirus types A–F using two pyrosequencing primers on two distinct PCR products, designed quickly and easily using our software
Viral population estimation using pyrosequencing
The diversity of virus populations within single infected hosts presents a
major difficulty for the natural immune response as well as for vaccine design
and antiviral drug therapy. Recently developed pyrophosphate based sequencing
technologies (pyrosequencing) can be used for quantifying this diversity by
ultra-deep sequencing of virus samples. We present computational methods for
the analysis of such sequence data and apply these techniques to pyrosequencing
data obtained from HIV populations within patients harboring drug resistant
virus strains. Our main result is the estimation of the population structure of
the sample from the pyrosequencing reads. This inference is based on a
statistical approach to error correction, followed by a combinatorial algorithm
for constructing a minimal set of haplotypes that explain the data. Using this
set of explaining haplotypes, we apply a statistical model to infer the
frequencies of the haplotypes in the population via an EM algorithm. We
demonstrate that pyrosequencing reads allow for effective population
reconstruction by extensive simulations and by comparison to 165 sequences
obtained directly from clonal sequencing of four independent, diverse HIV
populations. Thus, pyrosequencing can be used for cost-effective estimation of
the structure of virus populations, promising new insights into viral
evolutionary dynamics and disease control strategies.Comment: 23 pages, 13 figure
454 sequencing of pooled BAC clones on chromosome 3H of barley
<p>Abstract</p> <p>Background</p> <p>Genome sequencing of barley has been delayed due to its large genome size (ca. 5,000Mbp). Among the fast sequencing systems, 454 liquid phase pyrosequencing provides the longest reads and is the most promising method for BAC clones. Here we report the results of pooled sequencing of BAC clones selected with ESTs genetically mapped to chromosome 3H.</p> <p>Results</p> <p>We sequenced pooled barley BAC clones using a 454 parallel genome sequencer. A PCR screening system based on primer sets derived from genetically mapped ESTs on chromosome 3H was used for clone selection in a BAC library developed from cultivar "Haruna Nijo". The DNA samples of 10 or 20 BAC clones were pooled and used for shotgun library development. The homology between contig sequences generated in each pooled library and mapped EST sequences was studied. The number of contigs assigned on chromosome 3H was 372. Their lengths ranged from 1,230 bp to 58,322 bp with an average 14,891 bp. Of these contigs, 240 showed homology and colinearity with the genome sequence of rice chromosome 1. A contig annotation browser supplemented with query search by unique sequence or genetic map position was developed. The identified contigs can be annotated with barley cDNAs and reference sequences on the browser. Homology analysis of these contigs with rice genes indicated that 1,239 rice genes can be assigned to barley contigs by the simple comparison of sequence lengths in both species. Of these genes, 492 are assigned to rice chromosome 1.</p> <p>Conclusions</p> <p>We demonstrate the efficiency of sequencing gene rich regions from barley chromosome 3H, with special reference to syntenic relationships with rice chromosome 1.</p
Comparison of phenotypic and genotypic tropism determination in triple-class-experienced HIV patients eligible for maraviroc treatment
BACKGROUND: Determination of HIV-1 tropism is a pre-requisite to the use of CCR5 antagonists. This study evaluated the potential of population genotypic tropism tests (GTTs) in clinical practice, and the correlation with phenotypic tropism tests (PTTs) in patients accessing routine HIV care. METHODS: Forty-nine consecutive plasma samples for which an original Trofile(TM) assay was performed were obtained from triple-class-experienced patients in need of a therapy change. Viral tropism was defined as the consensus of three or more tropism calls obtained from the combination of two independent population PTT assays (Trofile Biosciences, San Francisco, CA, USA, and Virco, Beerse, Belgium), population GTTs and GTTs based on ultra-deep sequencing. If no consensus was reached, a clonal PTT was performed in order to finalize the tropism call. This two-step approach allowed the definition of a reference tropism call. RESULTS: According to the reference tropism result, 35/49 samples were CCR5 tropic (R5) (patients eligible for maraviroc treatment) and 14/49 were assigned as non-R5 tropic. The non-R5 samples [patients not eligible for maraviroc treatment according to the FDA/European Medicines Agency (EMEA) label] group included both the CXCR4 (X4) samples and the dual and mixed CCR5/CXCR4 (R5/X4) samples. Compared with Trofile(TM) population PTTs, population GTTs showed a higher sensitivity (97%) and a higher negative predictive value (91%), but almost equal specificity and an equal positive predictive value. CONCLUSIONS: In line with recent reports from clinical trial data, our data support the use of population genotypic tropism testing as a tool for tropism determination before the start of maraviroc
Automated Solid-Phase Subcloning Based on Beads Brought into Proximity by Magnetic Force
In the fields of proteomics, metabolic engineering and synthetic biology there is a need for high-throughput and reliable cloning methods to facilitate construction of expression vectors and genetic pathways. Here, we describe a new approach for solid-phase cloning in which both the vector and the gene are immobilized to separate paramagnetic beads and brought into proximity by magnetic force. Ligation events were directly evaluated using fluorescent-based microscopy and flow cytometry. The highest ligation efficiencies were obtained when gene- and vector-coated beads were brought into close contact by application of a magnet during the ligation step. An automated procedure was developed using a laboratory workstation to transfer genes into various expression vectors and more than 95% correct clones were obtained in a number of various applications. The method presented here is suitable for efficient subcloning in an automated manner to rapidly generate a large number of gene constructs in various vectors intended for high throughput applications
- …