11 research outputs found

    Acoustic, psychophysical, and neuroimaging measurements of the effectiveness of active cancellation during auditory functional magnetic resonance imaging

    Get PDF
    Functional magnetic resonance imaging (fMRI) is one of the principal neuroimaging techniques for studying human audition, but it generates an intense background sound which hinders listening performance and confounds measures of the auditory response. This paper reports the perceptual effects of an active noise control (ANC) system that operates in the electromagnetically hostile and physically compact neuroimaging environment to provide significant noise reduction, without interfering with image quality. Cancellation was first evaluated at 600 Hz, corresponding to the dominant peak in the power spectrum of the background sound and at which cancellation is maximally effective. Microphone measurements at the ear demonstrated 35 dB of acoustic attenuation [from 93 to 58 dB sound pressure level (SPL)], while masked detection thresholds improved by 20 dB (from 74 to 54 dB SPL). Considerable perceptual benefits were also obtained across other frequencies, including those corresponding to dips in the spectrum of the background sound. Cancellation also improved the statistical detection of sound-related cortical activation, especially for sounds presented at low intensities. These results confirm that ANC offers substantial benefits for fMRI research

    Shared neural resources between left and right interlimb coordination skills: The neural substrate of abstract motor representations

    No full text
    Functional magnetic resonance imaging was used to reveal the shared neural resources between movements performed with effectors of the left versus right body side. Prior to scanning, subjects extensively practiced a complex coordination pattern involving cyclical motions of the ipsilateral hand and foot according to a 90 degrees out-of-phase coordination mode. Brain activity associated with this (nonpreferred) coordination pattern was contrasted with pre-existing isodirectional (preferred) coordination to extract the learning-related brain networks. To identify the principal candidates for effector-independent movement encoding, the conjunction of training-related activity for left and right limb coordination was determined. A dominantly left-lateralized parietal-to-(pre)motor activation network was identified, with activation in inferior and superior parietal cortex extending into intraparietal sulcus and activation in the premotor areas, including inferior frontal gyrus (pars opercularis). Similar areas were previously identified during observation of complex coordination skills by expert performers. These parietal-premotor areas are principal candidates for abstract (effector-independent) movement encoding, promoting motor equivalence, and they form the highest level in the action representation hierarchy.status: publishe
    corecore