12 research outputs found

    THE COMMUNITY LEVERAGED UNIFIED ENSEMBLE (CLUE) IN THE 2016 NOAA/HAZARDOUS WEATHER TESTBED SPRING FORECASTING EXPERIMENT

    Get PDF
    One primary goal of annual Spring Forecasting Experiments (SFEs), which are coorganized by NOAA’s National Severe Storms Laboratory and Storm Prediction Center and conducted in the National Oceanic and Atmospheric Administration’s (NOAA) Hazardous Weather Testbed, is documenting performance characteristics of experimental, convection-allowing modeling systems (CAMs). Since 2007, the number of CAMs (including CAM ensembles) examined in the SFEs has increased dramatically, peaking at six different CAM ensembles in 2015. Meanwhile, major advances have been made in creating, importing, processing, verifying, and developing tools for analyzing and visualizing these large and complex datasets. However, progress toward identifying optimal CAM ensemble configurations has been inhibited because the different CAM systems have been independently designed, making it difficult to attribute differences in performance characteristics. Thus, for the 2016 SFE, a much more coordinated effort among many collaborators was made by agreeing on a set of model specifications (e.g., model version, grid spacing, domain size, and physics) so that the simulations contributed by each collaborator could be combined to form one large, carefully designed ensemble known as the Community Leveraged Unified Ensemble (CLUE). The 2016 CLUE was composed of 65 members contributed by five research institutions and represents an unprecedented effort to enable an evidence-driven decision process to help guide NOAA’s operational modeling efforts. Eight unique experiments were designed within the CLUE framework to examine issues directly relevant to the design of NOAA’s future operational CAM-based ensembles. This article will highlight the CLUE design and present results from one of the experiments examining the impact of single versus multicore CAM ensemble configurations

    THE COMMUNITY LEVERAGED UNIFIED ENSEMBLE (CLUE) IN THE 2016 NOAA/HAZARDOUS WEATHER TESTBED SPRING FORECASTING EXPERIMENT

    Get PDF
    One primary goal of annual Spring Forecasting Experiments (SFEs), which are coorganized by NOAA’s National Severe Storms Laboratory and Storm Prediction Center and conducted in the National Oceanic and Atmospheric Administration’s (NOAA) Hazardous Weather Testbed, is documenting performance characteristics of experimental, convection-allowing modeling systems (CAMs). Since 2007, the number of CAMs (including CAM ensembles) examined in the SFEs has increased dramatically, peaking at six different CAM ensembles in 2015. Meanwhile, major advances have been made in creating, importing, processing, verifying, and developing tools for analyzing and visualizing these large and complex datasets. However, progress toward identifying optimal CAM ensemble configurations has been inhibited because the different CAM systems have been independently designed, making it difficult to attribute differences in performance characteristics. Thus, for the 2016 SFE, a much more coordinated effort among many collaborators was made by agreeing on a set of model specifications (e.g., model version, grid spacing, domain size, and physics) so that the simulations contributed by each collaborator could be combined to form one large, carefully designed ensemble known as the Community Leveraged Unified Ensemble (CLUE). The 2016 CLUE was composed of 65 members contributed by five research institutions and represents an unprecedented effort to enable an evidence-driven decision process to help guide NOAA’s operational modeling efforts. Eight unique experiments were designed within the CLUE framework to examine issues directly relevant to the design of NOAA’s future operational CAM-based ensembles. This article will highlight the CLUE design and present results from one of the experiments examining the impact of single versus multicore CAM ensemble configurations

    Sensitivity of Dryline Convection Forecasts to Upstream Forecast Errors for Two Weakly Forced MPEX Cases

    No full text
    The sensitivity of convective forecasts along the Texas dryline to upstream forecast fields at earlier lead times is evaluated for two consecutive days (27-28 May) characterized by no clear synoptic forcing for convection initiation (CI) during the 2013 Mesoscale Predictability Experiment (MPEX) by applying the ensemble-based sensitivity technique to convection-allowing WRF ensemble forecasts. For both cases, the members with stronger convection are characterized by higher water vapor just above the top of the boundary layer, which is associated with lower convective inhibition (CIN) at the time of CI. Forecast convection is sensitive to the lower-tropospheric water vapor and zonal wind at earlier lead times farther south along the dryline, such that increasing the water vapor and/or making the wind more easterly is associated with more convection. For 28 May, the water vapor along the dryline is also sensitive to the convection that occurs around 0600 UTC, which leads to cold pool-induced surface divergence that subsequently shifts the dryline north or south. Ensemble members that correctly have decreased convection in the Texas Panhandle on 28 May have more accurate forecasts of water vapor and meridional wind with respect to dropwindsondes in the sensitive region 9 h prior to CI compared to members with more extensive convection. Reducing the 0-h water vapor within the sensitive region can suppress convection in members with extensive convection; however, increasing the 0-h water vapor does not lead to more convection in members without convection.NSF [1239787]; NOAA [NA14OAR4830172]6 month embargo; Published Online: 19 April 2017This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    corecore