96 research outputs found

    Targeting the Pathophysiology of Diabetic Macular Edema

    Get PDF

    Learning fuzzy measures for aggregation in fuzzy rule-based models

    Get PDF
    Comunicación presentada al 15th International Conference on Modeling Decisions for Artificial Intelligence, MDAI 2018 (15 - 18 october 2018).Fuzzy measures are used to express background knowledge of the information sources. In fuzzy rule-based models, the rule confidence gives an important information about the final classes and their relevance. This work proposes to use fuzzy measures and integrals to combine rules confidences when making a decision. A Sugeno $$\lambda $$ -measure and a distorted probability have been used in this process. A clinical decision support system (CDSS) has been built by applying this approach to a medical dataset. Then we use our system to estimate the risk of developing diabetic retinopathy. We show performance results comparing our system with others in the literature.This work is supported by the URV grant 2017PFR-URV-B2-60, and by the Spanish research projects no: PI12/01535 and PI15/01150 for (Instituto de Salud Carlos III and FEDER funds). Mr. Saleh has a Pre-doctoral grant (FI 2017) provided by the Catalan government and an Erasmus+ travel grant by URV. Prof. Bustince acknowledges the support of Spanish project TIN2016-77356-P

    Impact of age at type 2 diabetes mellitus diagnosis on mortality and vascular complications: systematic review and meta-analyses

    Get PDF
    AIMS/HYPOTHESIS: Few studies examine the association between age at diagnosis and subsequent complications from type 2 diabetes. This paper aims to summarise the risk of mortality, macrovascular complications and microvascular complications associated with age at diagnosis of type 2 diabetes. METHODS: Data were sourced from MEDLINE and All EBM (Evidence Based Medicine) databases from inception to July 2018. Observational studies, investigating the effect of age at diabetes diagnosis on macrovascular and microvascular diabetes complications in adults with type 2 diabetes were selected according to pre-specified criteria. Two investigators independently extracted data and evaluated all studies. If data were not reported in a comparable format, data were obtained from authors, presented as minimally adjusted ORs (and 95% CIs) per 1 year increase in age at diabetes diagnosis, adjusted for current age for each outcome of interest. The study protocol was recorded with PROSPERO International Prospective Register of Systematic Reviews (CRD42016043593). RESULTS: Data from 26 observational studies comprising 1,325,493 individuals from 30 countries were included. Random-effects meta-analyses with inverse variance weighting were used to obtain the pooled ORs. Age at diabetes diagnosis was inversely associated with risk of all-cause mortality and macrovascular and microvascular disease (all p < 0.001). Each 1 year increase in age at diabetes diagnosis was associated with a 4%, 3% and 5% decreased risk of all-cause mortality, macrovascular disease and microvascular disease, respectively, adjusted for current age. The effects were consistent for the individual components of the composite outcomes (all p < 0.001). CONCLUSIONS/INTERPRETATION: Younger, rather than older, age at diabetes diagnosis was associated with higher risk of mortality and vascular disease. Early and sustained interventions to delay type 2 diabetes onset and improve blood glucose levels and cardiovascular risk profiles of those already diagnosed are essential to reduce morbidity and mortality. Graphical abstract

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Design and baseline characteristics of the finerenone in reducing cardiovascular mortality and morbidity in diabetic kidney disease trial

    Get PDF
    Background: Among people with diabetes, those with kidney disease have exceptionally high rates of cardiovascular (CV) morbidity and mortality and progression of their underlying kidney disease. Finerenone is a novel, nonsteroidal, selective mineralocorticoid receptor antagonist that has shown to reduce albuminuria in type 2 diabetes (T2D) patients with chronic kidney disease (CKD) while revealing only a low risk of hyperkalemia. However, the effect of finerenone on CV and renal outcomes has not yet been investigated in long-term trials. Patients and Methods: The Finerenone in Reducing CV Mortality and Morbidity in Diabetic Kidney Disease (FIGARO-DKD) trial aims to assess the efficacy and safety of finerenone compared to placebo at reducing clinically important CV and renal outcomes in T2D patients with CKD. FIGARO-DKD is a randomized, double-blind, placebo-controlled, parallel-group, event-driven trial running in 47 countries with an expected duration of approximately 6 years. FIGARO-DKD randomized 7,437 patients with an estimated glomerular filtration rate >= 25 mL/min/1.73 m(2) and albuminuria (urinary albumin-to-creatinine ratio >= 30 to <= 5,000 mg/g). The study has at least 90% power to detect a 20% reduction in the risk of the primary outcome (overall two-sided significance level alpha = 0.05), the composite of time to first occurrence of CV death, nonfatal myocardial infarction, nonfatal stroke, or hospitalization for heart failure. Conclusions: FIGARO-DKD will determine whether an optimally treated cohort of T2D patients with CKD at high risk of CV and renal events will experience cardiorenal benefits with the addition of finerenone to their treatment regimen. Trial Registration: EudraCT number: 2015-000950-39; ClinicalTrials.gov identifier: NCT02545049
    corecore