2,483 research outputs found

    Gravitational entropy of Kerr black holes

    Get PDF
    Classical invariants of General Relativity can be used to approximate the entropy of the gravitational field. In this work, we study two proposed estimators based on scalars constructed out from the Weyl tensor, in Kerr spacetime. In order to evaluate Clifton, Ellis and Tavakol's proposal, we calculate the gravitational energy density, gravitational temperature, and gravitational entropy of the Kerr spacetime. We find that in the frame we consider, Clifton et al.'s estimator does not reproduce the Bekenstein-Hawking entropy of a Kerr black hole. The results are compared with previous estimates obtained by the authors using the Rudjord-Gr\varnothingn-Hervik approach. We conclude that the latter represents better the expected behaviour of the gravitational entropy of black holes.Comment: 12 pages, 7 figures, accepted for publication in General Relativity and Gravitatio

    Gravitational entropy of black holes and wormholes

    Get PDF
    Pure thermodynamical considerations to describe the entropic evolution of the universe seem to violate the Second Law of Thermodynamics. This suggests that the gravitational field itself has entropy. In this paper we expand recent work done by Rudjord, Gr{\O}n and Sigbj{\O}rn where they suggested a method to calculate the gravitational entropy in black holes based on the so-called `Weyl curvature conjecture'. We study the formulation of an estimator for the gravitational entropy of Reissner-Nordstr\"om, Kerr, Kerr-Newman black holes, and a simple case of wormhole. We calculate in each case the entropy for both horizons and the interior entropy density. Then, we analyse whether the functions obtained have the expected behaviour for an appropriate description of the gravitational entropy density.Comment: 11 pages, 11 figures, accepted for publication in International Journal of Theoretical Physic

    High-energy signatures of binary systems of supermassive black holes

    Get PDF
    Context. Binary systems of supermassive black holes are expected to be strong sources of long gravitational waves prior to merging. These systems are good candidates to be observed with forthcoming space-borne detectors. Only a few of these systems, however, have been firmly identified to date. Aims. We aim at providing a criterion for the identification of some supermassive black hole binaries based on the characteristics of the high-energy emission of a putative relativistic jet launched from the most massive of the two black holes. Methods. We study supermassive black hole binaries where the less massive black hole has carved an annular gap in the circumbinary disk, but nevertheless there is a steady mass flow across its orbit. Such a perturbed disk is hotter and more luminous than a standard thin disk in some regions. Assuming that the jet contains relativistic electrons, we calculate its broadband spectral energy distribution focusing on the inverse Compton up-scattering of the disk photons. We also compute the opacity to the gamma rays produced in the jet by photon annihilation with the disk radiation and take into account the effects of the anisotropy of the target photon field as seen from the jet. Results. We find that the excess of low-energy photons radiated by the perturbed disk causes an increment in the external Compton emission from the jet in the X-ray band, and a deep absorption feature at energies of tens of TeVs for some sets of parameters. According to our results, observations with Cherenkov telescopes might help in the identification of supermassive black hole binaries, especially those black hole binaries that host primaries from tens to hundreds of million of solar masses.Comment: 12 pages, 11 figures, accepted for publication in Astronomy & Astrophysic

    Accretion disks around black holes in modified strong gravity

    Get PDF
    Stellar-mass black holes offer what is perhaps the best scenario to test theories of gravity in the strong-field regime. In particular, f(R) theories, which have been widely discuss in a cosmological context, can be constrained through realistic astrophysical models of phenomena around black holes. We aim at building radiative models of thin accretion disks for both Schwarzschild and Kerr black holes in f(R) gravity. We study particle motion in f(R)-Schwarzschild and Kerr space-times. We present the spectral energy distribution of the accretion disk around constant Ricci scalar f(R) black holes, and constrain specific f(R) prescriptions using features of these systems. A precise determination of both the spin and accretion rate onto black holes along with X-ray observations of their thermal spectrum might allow to identify deviations of gravity from General Relativity. We use recent data on the high-mass X-ray binary Cygnus X-1 to restrict the values of the parameters of a class of f(R) models.Comment: 16 pages, 20 figures, accepted for publication in Astronomy & Astrophysic

    Cosmological black holes and the direction of time

    Get PDF
    Macroscopic irreversible processes emerge from fundamental physical laws of reversible character. The source of the local irreversibility seems to be not in the laws themselves but in the initial and boundary conditions of the equations that represent the laws. In this work we propose that the screening of currents by black hole event horizons determines, locally, a preferred direction for the flux of electromagnetic energy. We study the growth of black hole event horizons due to the cosmological expansion and accretion of cosmic microwave background radiation, for different cosmological models. We propose generalized McVittie co-moving metrics and integrate the rate of accretion of cosmic microwave background radiation onto a supermassive black hole over cosmic time. We find that for flat, open, and closed Friedmann cosmological models, the ratio of the total area of the black hole event horizons with respect to the area of a radial co-moving space-like hypersurface always increases. Since accretion of cosmic radiation sets an absolute lower limit to the total matter accreted by black holes, this implies that the causal past and future are not mirror symmetric for any spacetime event. The asymmetry causes a net Poynting flux in the global future direction; the latter is in turn related to the ever increasing thermodynamic entropy. Thus, we expose a connection between four different "time arrows": cosmological, electromagnetic, gravitational, and thermodynamic.Comment: 13 pages, 2 figures in Foundations of Science (2017

    Historical narratives and civic subjectification in post-conflict times

    Get PDF
    This literature review seeks to answer the question: What is the role of historical narratives in constructing the post-conflict citizen? The author explores some of the sociopolitical implications of telling a particular narrative as a tool for making sense of the past, the present, and the future, as well as a key element in the subjectification of the post-conflict citizenry. This is, the creation of new subjectivities, roles, expectations, and codes of conduct consistent with the goal of national reconstruction. The author delves into three main areas: 1) the normative post-conflict citizen 2) the different types of historical narratives and their deployment for citizenship formation 3) youth’s engagement and responses to historical narratives and civic subjectification. Conclusions point to some of the challenges and opportunities that Colombia –as one of the most recent cases of political transition– might face in relation to historical narratives, post-conflict citizenship, and peacebuilding efforts

    An analysis of a regular black hole interior model

    Get PDF
    We analyze the thermodynamical properties of the regular static and spherically symmetric black hole interior model presented by Mboyne and Kazanas. Equations for the thermodynamical quantities valid for an arbitrary density profile are deduced, and from them we show that the model is thermodynamically unstable. Evidence is also presented pointing to its dynamical instability. The gravitational entropy of this solution based on the Weyl curvature conjecture is calculated, following the recipe given by Rudjord, Gr\varnothingn and Sigbj\varnothingrn, and it is shown to have the expected behavior.Comment: 22 pages, 17 figures, accepted for publication in International Journal of Theoretical Physic

    Presentism meets black holes

    Get PDF
    Presentism is, roughly, the metaphysical doctrine that maintains that whatever exists, exists in the present. The compatibility of presentism with the theories of special and general relativity was much debated in recent years. It has been argued that at least some versions of presentism are consistent with time-orientable models of general relativity. In this paper we confront the thesis of presentism with relativistic physics, in the strong gravitational limit where black holes are formed. We conclude that the presentist position is at odds with the existence of black holes and other compact objects in the universe. A revision of the thesis is necessary, if it is intended to be consistent with the current scientific view of the universe.Fil: Romero, Gustavo Esteban. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomia; Argentina. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; ArgentinaFil: Pérez, Daniela. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomia; Argentin

    Cancer and orofacial pain

    Get PDF
    Cancer pain is a devastating condition. Pain in the orofacial region, may be present as the single symptom of cancer or as a symptom of cancer in its later stages. This manuscript revises in a comprehensive manner the content of the conference entitled ?Orofacial Pain and Cancer? (Dolor Orofacial y Cancer) given at the VI Simposio International ?Advances in Oral Cancer? on the 22 July, 2016 in Donostia. We have reviewed (pubmed-medline) from the most relevant literature including reviews, systematic reviews and clinical cases, the significant and evidence-based mechanisms and mediators of cancer-associated facial pain, the diverse types of cancers that can be present in the craniofacial region locally or from distant sites that can refer to the orofacial region, cancer therapy that may induce pain in the orofacial region as well as discussed some of the new advancements in cancer pain therapy. There is still a lack of understanding of cancer pain pathophysiology since depends of the intrinsic heterogeneity, type and anatomic location that the cancer may present, making more challenging the creation of better therapeutic options. Orofacial pain can arise from regional or distant tumor effects or as a consequence of cancer therapy. The clinician needs to be aware that the pain may present the characteristics of any other orofacial pain disorder so a careful differential diagnosis needs to be given. Cancer pain diagnosis is made by exclusion and only can be reached after a thorough medical history, and all the common etiologies have been carefully investigated and ruled out. The current management tools are not optimal but there is hope for new, safer and effective therapies coming in the next years

    Gravitational entropy of Kerr black holes

    Get PDF
    Classical invariants of General Relativity can be used to approximate the entropy of the gravitational field. In this work, we study two proposed estimators based on scalars constructed out from the Weyl tensor, in Kerr spacetime. In order to evaluate Clifton, Ellis and Tavakol’s proposal, we calculate the gravitational energy density, gravitational temperature, and gravitational entropy of the Kerr spacetime. We find that in the frame we consider, Clifton et al.’s estimator does not reproduce the Bekenstein-Hawking entropy of a Kerr black hole. The results are compared with previous estimates obtained by the authors using the Rudjord-Gr ∅n-Hervik approach. We conclude that the latter represents better the expected behaviour of the gravitational entropy of black holesFil: Pérez, Daniela. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomia; ArgentinaFil: Romero, Gustavo Esteban. Provincia de Buenos Aires. Gobernación. Comision de Investigaciones Científicas. Instituto Argentino de Radioastronomía. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto Argentino de Radioastronomia; Argentin
    corecore