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ABSTRACT

Context. Binary systems of supermassive black holes are expected to be strong sources of long gravitational waves prior to merging.
These systems are good candidates to be observed with forthcoming space-borne detectors. Only a few of these systems, however,

have been firmly identified to date.

Aims. We aim at providing a criterion for the identification of some supermassive black hole binaries based on the characteristics of
the high-energy emission of a putative relativistic jet launched from the most massive of the two black holes.

Methods. We study supermassive black hole binaries where the less massive black hole has carved an annular gap in the circumbinary
disk, but nevertheless there is a steady mass flow across its orbit. Such a perturbed disk is hotter and more luminous than a standard
thin disk in some regions. Assuming that the jet contains relativistic electrons, we calculate its broadband spectral energy distribution

focusing on the inverse Compton up-scattering of the disk photons.

We also compute the opacity to the gamma rays produced in the

jet by photon annihilation with the disk radiation and take into account the effects of the anisotropy of the target photon field as seen

from the jet.

Results. We find that the excess of low-energy photons radiated by the perturbed disk causes an increment in the external Compton
emission from the jet in the X-ray band, and a deep absorption feature at energies of tens of TeVs for some sets of parameters.
According to our results, observations with Cherenkov telescopes might help in the identification of supermassive black hole binaries,
especially those black hole binaries that host primaries from tens to hundreds of million of solar masses.

Key words. galaxies: active — galaxies: jets — accretion, accretion disks — radiation mechanisms: non-thermal

1. Introduction: Binary black holes

Binary systems of supermassive black holes are likely the result
of mergers of galaxies. The formation and evolution of such sys-
tems have been widely discussed in the literature. A recent re-
view of the subject is given by Dotti et al. (2012); see also Colpi
& Dotti (2009) and Komossa (2006). The identification of su-
permassive black hole binaries (SMBHBSs) is currently of great
interest, mainly because during the late stages of their evolution
these systems are expected to be strong sources of gravitational
waves at low and very low frequencies, and thus are suitable tar-
gets for space interferometers and pulsar timing arrays (Sesana
2013).

Currently, there are less than 20 identified SMBHBs and a
well-populated list of candidates. The known SMBHBs have or-
bital separations from about 10 kpc down to ~7 pc. Those with
the largest separations may be directly resolved in X-rays as two
distinct active nuclei in the same galaxy (Komossa et al. 2003;
Fabbiano et al. 2011). Further evidence for SMBHBs includes
observations of double broad or narrow lines in quasars (Zhou
et al. 2004; Boroson & Lauer 2009; Tsalmantza et al. 2011; Woo
et al. 2014) and periodic optical light curves: the BL Lac ob-
ject OJ 287 is the strongest candidate found so far on this basis
(Sillanpaa et al. 1988, 1996; Valtaoja et al. 2000). Helical distor-
tions, bending, and precession of jets have also been associated
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with the presence of SMBHBs (Begelman et al. 1980; Kaastra
& Roos 1992; Roos et al. 1993; Villata & Raiteri 1999; Katz
1997; Romero et al. 2000, 2003; Stirling et al. 2003; Lobanov &
Roland 2005; Liu & Chen 2007; Caproni et al. 2013; Kun et al.
2014). However, binarity is not the only possible explanation of
these features and hence many identifications are inconclusive.
The main rival explanation is jet precession by Lense-Thirring
effect. In this regard, the search for characteristic features of bi-
narity in the electromagnetic spectrum of SMBHBs, especially
during the pre-coalescence phase, has been addressed in a num-
ber of studies. These works focus on predicting the line emis-
sion and/or the continuum radiation from the accretion flow (e.g.
Bogdanovi¢ et al. 2008; Bode et al. 2010; Shen & Loeb 2010;
Zanotti et al. 2010; Tanaka et al. 2012).

Active galactic nuclei (AGN) that host SMBHBs at their
cores may be in a configuration such that the orbital plane of the
binary is coplanar with a circumbinary disk. The coupled evo-
lution of the binary and disk has been studied by many authors
both theoretically and numerically; see for example Gould & Rix
(2000), Dotti et al. (2007), Hayasaki et al. (2007), Kocsis et al.
(2012a), Roedig et al. (2012), D’Orazio et al. (2013), Rafikov
(2013), and Hayasaki et al. (2013). Recent general relativistic
magnetohydrodynamic simulations of magnetised circumbinary
accretion disks around binary black holes have been performed
by Gold et al. (2014a,b). The behaviour of a SMBHB embedded
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in an accretion disk bears some resemblance to a proto-planetary
system. In particular, the tidal torques exerted on the gas by the
less massive object (the secondary) may open a gap (i.e. a re-
gion of very low mass density) in the disk (e.g. Papaloizou &
Lin 1984; Lin & Papaloizou 1986a,b; Syer et al. 1991; Syer &
Clarke 1995; Takeuchi et al. 1996).

If the secondary is much less massive than the primary, the
disk is hardly perturbed and the inwards migration of the sec-
ondary is fast relative to the typical lifetime of the disk. This
is called Type I migration. As the mass ratio approaches unity
the tidal torques near the secondary are sufficiently strong for
the disk to be truncated: an outer ring of gas remains but the in-
flow of matter across the secondary’s orbit is insignificant. For
intermediate mass ratios, the inner disk is not evacuated but an
annular gap develops about the orbital path of the secondary; this
is the Type Il migration that proceeds over long timescales!. The
secondary follows the motion of the gas always remaining inside
the gap.

Numerical simulations by Kocsis et al. (2012a,b) show that,
for certain values of the mass ratio and orbital separation, there
exists another migration regime characterised by a migration rate
that is intermediate between Type I and Type II. In this so-called
Type 1.5 overflowing regime, the gas leaks across the annular
gap and the mass density of the disk is different from zero all
the way down to the last stable orbit. Then, accretion onto the
primary may steadily power an AGN and eventually feed a jet.

In an accretion disk in the “overflowing” regime a consider-
able amount of gas piles up outside the secondary’s orbit, caus-
ing the disk to become locally hot and thick. These perturbations
in density and temperature translate into features in the radiative
spectrum of the disk that are absent in the case of a standard ge-
ometrically thin disk without a gap (e.g. Liu & Shapiro 2010;
Kocsis et al. 2012a; Giiltekin & Miller 2012).

The emission at high energies (i.e. at gamma rays E, >
1 MeV) from AGN is radiation entirely produced in the relativis-
tic jets. One of the most efficient mechanisms of high-energy
non-thermal emission in jets is the inverse Compton (IC) scat-
tering of photons off relativistic electrons. Low-energy radiation
fields emitted both inside and outside the jets are suitable targets
for IC interactions; these same photons may absorb the gamma
rays produced in the jets. Plenty of target photons are provided
by the accretion disk. Since the characteristics of the IC spec-
trum and the opacity to gamma-ray propagation depend on the
energy distribution of the target photons, any noticeable feature
in the radiative spectrum of the disk is expected to have a corre-
lation in the high-energy spectrum of the jets.

In this work, we consider a SMBHB in the “overflowing”
regime where the primary launches a relativistic jet. We apply
the results of the simulations in Kocsis et al. (2012a,b) to charac-
terise the structure of the disk and calculate its modified radiative
spectrum. We then compute the non-thermal spectral energy dis-
tribution (SED) of the jet including the external IC scattering of
disk photons and correct it for absorption. Finally, we assess the
issue of whether the high-energy part of the SED displays any
features that could disclose the presence of a secondary black
hole.

The article is organised as follows. In Sect. 2 we provide a
brief description of the properties of a relativistic accretion disk
with a gap. In Sect. 3 we review the jet model. The SEDs of
the disk and jet for some representative sets of parameters are

! The transition between migration regimes depends not only on the
mass ratio but also on the orbital separation and properties of the accre-
tion disk such as the value of the viscosity.
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presented and discussed in Sect. 4. In Sect. 5 we discuss the ro-
bustness of our results and their applicability to the identification
of SMBHBSs. The last brief section is devoted to the conclusions.

2. Relativistic accretion disk with a gap

We consider a SMBHB in steady state. The primary is a Kerr
black hole of mass M, and angular momentum a surrounded
by an accretion disk. The position of the primary corresponds
to cylindrical radius » = 0. The secondary SMBH of mass m
follows a circular orbit of radius r, immersed in the disk. We
assume that the secondary has cleared an annular gap about its
orbital path. In order for this to occur, two basic conditions must
be fulfilled:

1. The radius of the Hill sphere of the secondary (its region
of gravitational influence) must be larger than the disk scale
height 42. The Hill radius is defined as

_ (s N (ay
rH_rS(3M.) ‘r5(3)’ M

where g = ms/M, is the mass ratio. The secondary can open
a gap in the disk if rg > A, which implies from Eq. (1) that

3
q23(ﬁ) : (2)

rs

2. The gap closing timescale due to the viscous reaction of the
disk is longer than the gap opening timescale. If the disk is
modelled as a standard disk (Shakura & Sunyaev 1973), this
implies that (Takeuchi et al. 1996)

h 2
= (;) o', 3)

where « is the usual dimensionless viscosity parameter.

For a given value of M,, we further restrict the values of ¢ and
rs according to the conditions found by Kocsis et al. (2012b)
for the system to settle in the “overflowing” regime; in particu-
lar, we choose 107> < ¢ < 107! and r, in the range shown in
Fig. 3 of Kocsis et al. (2012a). The disk may be divided into
five distinctive zones as shown in Fig. 1: inner far, near inte-
rior, near exterior, middle, and outer far regions. The influence
of the secondary is negligible in the far regions, it is significant in
the middle zone, and strong in the near regions. To characterise
the structure of the accretion disk in the regions where the tidal
perturbations of the secondary are strong, we adopt the prescrip-
tions given by Kocsis et al. (2012b), which are obtained from
fits to the results of their numerical simulations. Kocsis et al.
(2012b) compute the surface temperature T in terms of the cen-
tral temperature 7. and surface density X of the disk (see Eq. (15)
in Kocsis et al. 2012b) as

=5

1/4
—\ T 4
3K2) C»s ( )

where k = 0.35 cm? g~! is the opacity assumed to be dominated
by electron scattering. The central temperature and surface den-
sity are expressed in terms of

Tc:Tc(a—l’m—l’M7’f—2’¢I—3’7'52»72»7)» (5)
Z:z(a—l»m—lyM%f—Z»CI—&rsZ’VZ»r)» (6)

2 We assume that the ratio of the disk scale height to its radius, i/r, is
approximately constant.
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Here, « is the free parameter in the prescription of Shakura &
Sunyaev (1973) for the viscosity, M is the mass accretion rate,
Mggqq is the Eddington mass accretion rate, and f is a constant
calibrated with simulations. In what follows, we describe the
main properties of each zone of the perturbed disk.

— Inner far zone. The effects of the secondary SMBH are negli-
gible. The accretion disk, however, is under the strong grav-
itational field of the primary. We adopt the relativistic disk
model of Page & Thorne (1974) to calculate the temperature
profile in this zone. The expression for the energy flux across
the surface of the disk takes the form (Novikov & Thorne
1973; Page & Thorne 1974)

M Q,, T ~
F(r) = e (E— 92)2 f (E - QZ)L,, dr, (14

where Q stands for the angular velocity, and E and L repre-
sent the specific energy and angular momentum, which can
be calculated from the metric coefficients. Assuming the disk
radiates as a black body, the surface temperature as a func-
tion of the radial coordinate is obtained by means of Stefan-
Boltzmann’s law,

F(r))l/4 ‘

JsB

T (r) = Z(r) ( (15)
Here o is the Stefan-Boltzmann constant and Z is a cor-
rection by the gravitational redshift (nearly face-on case),

1

ri (r% +2afrg — 3rg \/;)i
(a\/@+r%) '

The gravitational radius of the primary is r, = GM,/c?.

— Near interior zone. The near interior zone is immediately in-
side the orbit of the secondary. Here the tidal effects of the
secondary dominate the viscous effects. The surface temper-
ature profile, calculated from Eq. (4) and Table 2 from Kocsis
et al. (2012b), is written as

Z(r) =

(16)
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Fig. 1. Accretion disk with a gap. The disk is divided into five distinctive
zones: the inner and outer far zones, where the perturbations caused
by the secondary are negligible, and the middle, near interior, and near
exterior zones, where the tidal perturbations of the secondary are strong.

The value of the constant C‘}i is determined by equating
Egs. (15) and (17) at the transition radius ry; between the
inner far and near interior zones. We calculate r,; assuming
that it is the radial distance where the surface density pro-
files of the inner far zone (Novikov & Thorne 1973; Page &
Thorne 1974) and near interior zone (Kocsis et al. 2012a,b)
take the same value.

Near exterior zone. The near exterior zone is immediately
outside the orbit of the secondary. As in the near interior
zone, tidal effects are more important than viscous effects.
From Eq. (4) and Table 2 from Kocsis et al. (2012b), the sur-
face temperature takes the form*

8
T:E(r) - g 112)( 104 a_l—l/z f_25/8 M7—1/8 q_35/6 r5219/96

r =77/96 e -5/8
s 12
x(—lon.) ( . ) L', (18)

S

§ - us 3
s“r:%(%) (1+r_ﬂ) [1_(“_”*) ( i )} (19)
5\3 rs r r—rs

Because of intense tidal torques, a significant amount of gas
accumulates in the near exterior zone, so the disk is hotter
and thicker than a standard thin disk at the same distance
from the primary.

— Middle zone. The tidal torque and heating are locally negligi-

ble compared to the viscous effects. There is, nonetheless, a
considerable amount of gas accumulated. The temperature
profile yields (see Eq. (4) and Table 2 from Kocsis et al.
2012b)

8
T (r) = C} e 2.39x 10% a_; 72 My~ £,5/8 116

.o\
X (—102M ) . (20)

As in the near interior zone, the value of the constant Cy' is
calculated by equating Eqgs. (18) and (20) at the transition
radius r,. between the near exterior and middle zones. An
expression for ry is given in Kocsis et al. (2012b).

Outer far zone. The outermost part of the disk is basically
unperturbed by the secondary and may be described by the

4 In the near exterior region, we adopt the case of unsaturated tidal
torque, that is, i(r) < r—ry. In particular, in the approximate expression

3 Kocsis et al. (2012b) use geometrical units G = ¢ = 1.

for the torque per unit mass in the disk given by Kocsis et al. (2012b) in
Eq. (5), the function A (Eq. (6)) takes the form A = r — r,.
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Fig. 2. Sketch of the disk-jet system (not to scale). Some relevant geo-
metrical parameters are shown.

Shakura-Sunyaev model. The surface temperature has the
well-known expression (see Eq. (4) and Table 2 from Kocsis
et al. 2012b)

~ 8
T (r) = v 2.06 x 10* "t M7
1/4

ro M T
X 1 _ 1SCO ,
102M, r

where ri, is the radius of the innermost stable circular orbit.

ey

3. Jet model

To characterise the jet, we apply the model developed by
Romero & Vila (2008), Reynoso et al. (2011), and Vila et al.
(2012). This type of jet model has been extensively applied to
galactic microquasars in the low hard state, but has also been
adapted to FR I radio galaxies (Reynoso et al. 2011) and blazars
(Reynoso et al. 2012). Since the jet is parametrised in terms of
the accretion rate, scaling for different situations is straightfor-
ward. The general prescriptions, such as the evolution of the
magnetic field with the distance to the black hole or the existence
of a particle acceleration zone in the region where the outflow is
plasma dominated, are expected to have a wide range of validity.

The jets are assumed to be two conical outflows launched
from a distance zo = 507 from the primary with an initial ra-
dius ry = 0.1z9. The symmetry axis of the jets, which we define
as the z-axis, is inclined an angle 6 with respect to the nor-
mal to the disk, and forms an angle 8,5 With the line of sight of
the observer’; see Fig. 2 for a sketch. We assume that the out-
flows propagate with a constant bulk Lorentz factor Iy up to
a distance zepg from the primary before braking because of the
interaction with the external medium.

Each jet carries a total power Lie, = 0.05Mc?. In the region
Zace < Z < zZmax (hereafter the acceleration region), a fraction
Lret = 0.05L;¢; of this power is transferred to particles that are
accelerated up to relativistic energies by some mechanism we

5 PFor simplicity, we assume that the normal to the disk, z-axis, and
line of sight lie in the same plane. This simplification does not have any
impact on the results of the calculations.
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do not specify. Here we only consider the injection of electrons,
although jets containing relativistic protons have been studied in
previous applications of the same model; see Vila et al. (2012)
and references therein.

We adopt an injection function of relativistic electrons that,
in the reference frame co-moving with the jet, is isotropic and a
power law with an exponential cutoff in energy,

[0] = erg_1 shem™.
(22)

O(E,2) = Qo E™" exp [-E/Emax(2)]

The function Q is different from zero only in the acceleration
region and for £ > E.;,. The maximum energy Ep,x(z) is
determined by the balance between the total energy loss rate
and the acceleration rate. We include adiabatic and radiative
energy losses by relativistic Bremsstrahlung, synchrotron ra-
diation, synchrotron-self Compton (SSC), and external inverse
Compton scattering (EC) with the accretion disk photons as tar-
gets. For the acceleration rate we adopt the usual expression

dE

O (23)

=necB(2).

acce

Here c is the speed of light, e the electron charge, and < 1
is a dimensionless parameter that characterises the efficiency of
the acceleration mechanism. The magnetic field strength in the
jet decays as B(z) oc 77\

Finally, to calculate the distribution of relativistic electrons
in steady state in the co-moving reference frame, N(E, z), we
numerically solve the kinetic equation
6N 0 ( dE 24)

conv - = E» = -
v oz 6E T tOlN) Q(E,z) [N]=erg  cm

in the region Z,ec < 7 < Zend. In this equation, dE/df|,, is the sum
of all energy loss rates, and veony ~ Vje; is the convection velocity
of the plasma.

We compute the SED of the jet® applying the usual formu-
lae for synchrotron radiation, relativistic Bremsstrahlung, and
inverse Compton scattering in the Thomson and Klein-Nishina
regimes (e.g. Blumenthal & Gould 1970; Romero & Vila 2014).
In the case of the external Compton spectrum, we account for
the anisotropy of the radiation field of the disk as seen from
the jet; see for instance Aharonian & Atoyan (1981), Dermer &
Schlickeiser (1993), Dermer et al. (2009), and Khangulyan et al.
(2014). The general expression for the EC emissivity (in units
of erg™! s7!' sr™!) of photons with energy E,, scattered into solid
angle Q, is given by

f aQ f dE,, —Noh
oh P AEndQpn
_doc

AN
Q. | dea1 -, .
fd fd (1= BecosV)Tpia. dE.d. dE,dQ,

Here dNpn/dEpndQypy, is the number density of target (disk) pho-
tons with energy E,, propagating in the direction given by the
solid angle Qp,, dN/dEdQ. is the number density of electrons
with energy E propagating in the direction of €., the factor
Be = V1 —9z% ~ 1 where v, is the electron Lorentz factor,
Y is the collision angle, and doic/dE,dQ, is the Klein-Nishina
double differential cross section.

qec (Ey, (25)

6 For all radiative processes the SED is initially computed in the co-
moving frame and then transformed to the reference frame of the ob-
server, except for external Compton (see below).
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Table 1. Values of the relevant model parameters.

Parameter, symbol [units] Mgigr Mgigo
Mass of the primary, M, [M] 107 108
Mass accretion rate, M [ Mgqq] 0.12 0.12
Mass ratio, g 55x1073  24x1073
Orbital separation, 7 [7,] 1.8 x 10* 1.5 % 10°
Hill radius (gap half width), ry [r,] 22x10° 1.4 x 10%
Disk inner radius (radius of the ISCO), rj, [r,] 1.45 1.45
Transition radius inner far/near interior regions, ry; [r,] 1.2x10* 1.1 x10°
Transition radius near exterior/middle regions, rye [7,] 5.6 x 10* 3.9x 10°

We approximate €. ~ Q,, since y. > 1 and thus the photons
are basically scattered in the direction of motion of the electrons.
Under this assumption the double differential cross section sim-
plifies to

doic doc
dE,d0, ~ dE,

5(Q, - Q). (26)

where doc/dE, is given by Egs. (25)—(27) in Dermer et al.
(2009) or Eq. (2) in Khangulyan et al. (2014). Then Eq. (26)
reduces to

oo [omn [Fara e e
gEC By, 58y,2) = € ph i P A dQpn
P!
dN doic
X | dE(1 —
f (1 =hecosd) 4raq. aE,

with the collision angle and the electron distribution evaluated at
Q. = Q,. The limits of the integral over the target photon energy
are

Ey

Emin — mecz Q’EY
ph E-E, ) 2y.(1 = Bccosy)

max

T (1= Becosy)
(28)

The integrals in Eq. (27) may be equivalently computed in a ref-
erence frame fixed to the accretion disk (i.e. the observer frame)
or in the jet co-moving frame. We choose to perform the calcula-
tions in the observer frame where the disk photon field is known
as follows:

dNpw | 2 E, 29)
dEpndQpn |y, €313 explEpn/(KT9)] - 1
The (isotropic) electron distribution in the jet frame is
dN N
=—, (30)
dEdQe i 4

where N is given by the solution of Eq. (24). It may be trans-
formed to the observer frame applying Eq. (5) of Torres &
Reimer (2011).

Finally, to correct for absorption, the SED is multiplied by
an attenuation parameter exp(—7,,), where ., (E,) is the optical
depth for pair production in two-photon annihilation (e.g. Becker
& Kafatos 1995). This is a first order correction and the develop-
ment of an electromagnetic cascade remains to be investigated.

4. Results

We consider the two sets of parameters given in Table 1, M5k
and Mgisko, to characterise the accreting system. The mass of
the primary is 107 My in model Mg, and 108 M in model
Mgisko. In both cases, the angular momentum of the primary is
alre = 0.99, which corresponds to risco = 1.4545 1y, and the
mass accretion rate is M = 0.1 Mgqq. We notice that micro-
quasars in the low hard state and blazars are usually thought to
be inefficient accreting sources. Advection-dominated accretion
flow (ADAF) and truncated disk-plus corona models are com-
monly adopted in the description of these kinds of sources. The
accretion rate adopted here is in the upper band of the allowed
values, which corresponds to the more luminous sources (see
e.g. Narayan et al. 1998).

The values of rs and ¢ are chosen to obtain the largest possi-
ble orbital separation and the widest gap. These parameters are
not independent. Figure 4 of Kocsis et al. (2012b) shows the al-
lowed region in the g — r¢ space. We approximate the half-width
of the gap by the Hill radius ry of the secondary. The simulations
of Kocsis et al. (2012b,a) do not apply inside the gap, so the re-
gionry — ry < r < rg + ry is excluded from our calculations. The
remaining two free parameters in the formulas of Kocsis et al.
(2012Db) are the viscosity parameter o and a coefficient f in the
expression of the tidal torque. We fix @ = 0.1 and f = 0.01
following Kocsis et al. (2012b).

4.1. Temperature profile and radiative spectrum of the disk

Figure 3 shows the surface temperature of the disk as a function
of radius for both models, calculated with the parametrisation
given in Sect. 2. Because of the increased density and pressure,
the temperature rises sharply just outside the secondary’s orbit.
The corresponding SED of the disk are plotted in Fig. 4. The
spectra are clearly different from those of a standard accretion
disk without a gap around a black hole of the same mass and
angular momentum as the primary. At low energies, the lumi-
nosity is higher than that of an accretion disk without a gap.
This increment is caused by the high temperatures in the near
exterior and middle zones compared with the temperature in the
Page-Thorne model. From about 1 eV (near-infrared) up to the
cutoff at =100 eV (ultraviolet) both SEDs coincide. As the mass
of the primary increases and the distance between the SMBHs
decreases, the size of the gap gets smaller and, hence, the sig-
natures of the gap on the SED begin to disappear. We also no-
tice that the perturbation caused by the secondary occurs at large
distances from the black hole in comparison with the distances
associated with the inner disk. Hence, if the disk is truncated
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Fig. 3. Surface temperature of the disk as a function of radius for the set of parameters Mg (left) and My;so (right).
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Fig. 4. SED of the disk for the set of parameters My« and Mo (right). The luminosity of a relativistic accretion disk without a gap around a
SMBH with the same mass, spin, and accretion rate as the primary is shown for comparison in dashed line. In all SEDs shown in the figures we

plot the total luminosity as a function of energy.

and its inner part is replaced by an ADAF, this would not signif-
icantly affect the high-energy effects we discuss in this work.

4.2. Non-thermal radiation from the jet

We have calculated the jet emission for a large number of models
characterised by different sets of parameters in order to explore
the impact of the existence of the gap and modified external ther-
mal radiation on the SEDs of different systems. In Figs. 5-10
we show a sample of cases that illustrate the broadband SEDs
of the jet radiation of binary black hole systems with a gap in
their disks. The set of parameters for the jet models are listed in
Table 2. Models are labelled from Mje;; to Mjeis. The correspond-
ing disk models are Misk» for Mieq1, and Mgk for the remaining
cases. For comparison, the SEDs obtained for the same jets pa-
rameters but for the case of a disk without a gap are also plotted
along the SEDs shown in Figs. 5-10.

In all jet models, the base of the jet is close to the black
hole (50 gravitational radii) and the particle acceleration zone
extends from the near base region up to several thousands of
gravitational radii. The jet bulk Lorentz factor is moderate in the
first three models (about 20) and slower in the others (from 5
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to 10, see Table 2); for a general reference about this see Lister
et al. (2009). The original electron injection is canonical with a
slope of 2.2 in all models, except in model Mjes, which has a
hard spectral index of 1.5. Viewing angles are small (from 5 to 1
degree) so we are dealing with blazar-type objects. The jet power
is in the range from ~10*' —~10* erg s~!. All results presented in
the figures have been corrected by internal absorption of gamma
rays and are shown as seen in the observer’s frame.

At low energies, all SEDs are dominated by synchrotron ra-
diation. At optical-UV energies, since the jets are not exceed-
ingly powerful, the blue bump with the characteristic shape im-
printed by the gap is discernible in most cases. At high energies,
the emission is the result of the addition of EC and SSC. We se-
lected models dominated by EC. All models present a softening
in the gamma-ray spectrum around 10 GeV when compared with
the corresponding models without a gap. The suppression of the
very high-energy radiation by photon annihilation also occurs at
lower energies in the models with a gap than in those with stan-
dard disks. This is the effect of the excess of soft photons coming
from the outer border of the gap in the perturbed disks.

The model with greatest differences with respect to unper-
turbed disks is model M. This is the case of the hardest
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Table 2. Values of the parameters for the six disk+jet models.

Parameter, symbol [units] M M M3
Disk model M isko M gisia Mgis1
Base of the jet, zo [r,] 50 50 50
Base of the acceleration region, Zycc [7¢] 70 70 70
End of the acceleration region, Zmax [7¢] 7000 3000 3000
Termination of the jet, Zend [F] 7 % 10° 7 % 10° 7 % 10°
Jet inclination angle, 6, [deg] 4 0 4

Jet viewing angle, 6, [deg] 1 5

Jet bulk Lorentz factor, [ 20 20 20
Magnetic field at zyec, B(Zace) [G] 0.7 2.1 2.1
Jet power, Li [ergs™'] 6.5%x 10% | 6.5x10% | 6.5x 10%
Power relativistic electrons, Ly [erg s™'] 3.2x10% | 3.2x10* | 3.2x 10*
Minimum energy relativistic electrons, En, [11.¢?] 10 10 10
Injection spectral index, p 22 2.2 2.2
Acceleration efficiency, n 0.1 0.1 0.1
Parameter, symbol [units] My Mieis M6
Disk model Mgisi1 Mgisia Mis1
Base of the jet, 7o [7,] 50 50 50
Base of the acceleration region, Zcc [7¢] 70 70 70
End of the acceleration region, Zmax [7¢] 3000 3000 3000
Termination of the jet, Zend [7] 7 % 10° 7 % 10° 7 % 10°
Jet inclination angle, 6, [deg] 0 0 0

Jet viewing angle, 6, [deg] 5 5 5

Jet bulk Lorentz factor, T 10 5 10
Magnetic field at zyec, B(Zace) [G] 2.1 2.1 2.1
Jet power, Li [ergs™'] 6.5%x 102 | 6.5x10% | 6.5x 10%
Power relativistic electrons, Ly [erg s™'] 32x10% | 3.2x10* | 3.2x 10*
Minimum energy relativistic electrons, En, [11.¢?] 10 10 10
Injection spectral index, p 22 2.2 1.5
Acceleration efficiency, n 0.1 0.1 0.1

injection we have considered. The synchrotron peaks at X-rays,
as in X-ray selected BL Lac objects. Three peaks can be dis-
tinguished in the SED: the disk, the synchrotron peak, and the
EC peak. On the contrary, in the corresponding case without gap,
a hard spectrum extends all the way from UV to TeV energies.

We also notice that models with primary of the order of
107 My, display more peculiar high-energy features than models
with more massive black holes. In these disks the near exterior
region is located farther away from the black hole; what causes
that the excess in the emission of the perturbed disk is shifted to-
wards lower photon energies, as seen in Fig. 4. In these models,
then, there is an excess of target disk photons in the appropriate
energy band to produce gamma rays when they are up-scattered
by the relativistic electrons in the jets.

The secondary to primary black hole ratio for the models
with the strongest specific high-energy features, which can be
used to trace binarity, is ~0.05. So the secondary is an interme-
diate black hole captured by the primary. Old starbursts whose
central black hole has been reactivated by a fresh inflow of gas,
hence, might be propitious progenitors of these kinds of binary
systems.

Other regions of the parameter space allowed by the “over-
flowing” regime remain to be explored, but we expect the effects

of the existence of the gap are maximised for values of M, in the
range analysed here. For less massive primaries, the gap would
be wider but located too far out in the coldest regions of the disk.
For more massive primaries, on the other hand, the secondary
would be nearer but the gap would be too narrow to induce any
noticeable feature in the SED.

5. Discussion
5.1. Robustness and detectability

The kind of model studied in this paper is intentionally tuned
to maximise the observational features of SMBHBs in AGN.
Although several conditions should be fulfilled by a given sys-
tem to be detected through its high-energy emission, most of
these conditions are not unlikely to be met by several objects in
a large sample.

Specifically, we request the following conditions to be ful-
filled. Firstly, the binary orbit of the black hole system must be
co-planar. This is expected to be the predominant case among su-
permassive binaries because the process of resonant and hydro-
dynamic damping of inclination of a satellite (secondary) object
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interacting with a circumprimary disk (e.g. Artymowicz 1998).
These effects are well known from planetary formation.

Then, the mass ratio between the secondary and primary
black holes must be rather small (in the range 0.1-107°) to se-
cure a large gap. This case does not seem to be unusual since
primary black holes with masses in the range 107—108 M, are
thought to power most AGN and intermediate black holes should
be common in satellite galaxies. Mergers at high redshifts were
also a common occurrence (Wilson & Colbert 1995).

In our models, the separation between the black holes is of
several thousands of gravitational radii of the primary. This en-
sures that the excess of radiation in the perturbed disk is located
between the IR and optical bands, which is a suitable target for
EC scattering in the jet. Very close binaries will be short-lived
because of the strong gravitational wave losses. The medium-
separation systems are then expected to be the most numerous
among SMBHBs, so this requirement should be met for most
binaries.

Another assumption of our model is that the secondary is
able to open a gap in the disk. This is met essentially by all sys-
tems that also meet the conditions mentioned above, as shown
by the simulations performed by Kocsis et al. (2012a,b); see also
Sect. 2.

We demand that the eccentricity of the SMBHB is low, so
the circular orbit approximation is valid. This requirement is ex-
pected to be met by most systems because of the rapid circulari-
sation of the orbits produced by the viscous interactions between
the secondary and gas in the disk. This effect is well known from
planetary disks.

In order to have jets and, hence, gamma-ray emission, accre-
tion onto the primary must proceed in the overflowing regime
(Type 1.5 migration). The numerical simulations of Kocsis et al.
(2012b,a) show that this case is standard for the range of mass
ratios considered in our calculations. The fact that in the models
the AGN launches a relativistic jet that points nearly in the di-
rection of the observer is satisfied essentially by all non-nearby
AGN seen at gamma rays; otherwise, the sources would not be
detectable.

A crucial requirement of our models is that particles are ac-
celerated in a jet not too far from the central source. Otherwise,
EC scattering would not be effective. This does not seem to be a
problem, since the vast majority of blazars have a high incidence
of fast variability, which indicates that the radiation is being pro-
duced in a very compact region close to the central black hole
(e.g. Romero et al. 1997, 1999, 2002).

Finally, the EC process is the dominant contribution at
gamma rays. This dominance depends basically on the magnetic
field in the jet: where the field is high, electrons cool mainly by
synchrotron and SSC mechanisms. The detectability of binarity
through the features described in this paper crucially depends,
then, on having a rather modest magnetic field strength B < 1 G
in the gamma-ray emitting region. Since this region extends up
to distances of several thousands of gravitational radii and the
field must be below equipartition in order for the fluid to remain
compressible (otherwise shocks would not develop), we can ex-
pect such values not to be exceptional.

So, altogether, how robust is our model and what are the
real chances of detecting a SMBHB through gamma-ray obser-
vations? A quantitative estimate is not possible, since some of
the conditions numbered above remain essentially qualitative be-
cause of lack of a knowledge about galaxy evolution. However,
with several thousands of AGN detected so far by the Fermi
gamma-ray telescope and Cherenkov arrays, the actual chance of
having already observed one SMBHB with its SED dominated
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by EC radiation should be close to one. Of course, to identify
such a source in the sample is a very different issue, and the
SED calculations presented in this paper are aimed at providing
templates for such a search.

5.2. Dependence on changes in the parameter space

How sensitive is our model to changes in the different param-
eters? In particular the magnetic field and the location of the
acceleration region? In order to answer this question we have
computed a number of SEDs systematically changing these pa-
rameters. The following general trends were observed.

As expected, a high value of the magnetic field results in
a strong synchrotron component; the associated high-energy
SSC peak in the SED is also enhanced (see Fig. 11, upper left
panel). Models that have similar conditions but have a field lower
by two orders of magnitude have the synchrotron peak sup-
pressed and the high-energy radiation dominated by the EC com-
ponent. We notice that these models have compact acceleration
regions located close to the base of the jet, and hence, there are
plenty of photons coming from the disk for IC interactions (see
Fig. 11, upper right panel). If the acceleration region extends to
distances larger by an order of magnitude, two effects are ob-
served: the synchrotron peak almost disappears and the EC peak
at high energies is also strongly diminished. The reason is that
the same budget of energy in relativistic particles is distributed
along a much broader region, the farthest parts of which are at
such a distance from the disk the EC scattering becomes ineffec-
tive (see Fig. 11, lower left panel). The models with the strongest
high-energy features are those where the acceleration region is
very compact and located at the base of the jet. In these mod-
els, the whole energy budget of relativistic particles is injected
very close to the source of external photons and, at the same
time, synchrotron losses tend to be high because of relatively
high values of the magnetic field at the base of the jet. Such a
combination of parameters results in a broad two-peaked SED at
high energies, as shown in Fig. 11, lower right panel.

The existence of an acceleration region close to the base of
the jets seems to be favoured in most blazars by the observation
of fast variability, which is indicative of a very compact source.
At the same time, very strong magnetic fields are implausible
because if the jet flow is magnetically dominated, shocks are not
produced since the gas is mechanically incompressible. In all
models we computed in this work the magnetic field is below
equipartition with the gas.

6. Closing remarks

We have studied the radiative signatures of SMBHBs. We have
focused on a particular kind of accreting binaries: those where
the primary is more massive and the secondary can open a gap
on the accretion disk of the system. We have shown that when a
relativistic jet is present, external Compton interactions between
photons from the perturbed disk and relativistic electrons in the
base of the jet, can produce a unique signature in the SED at
gamma-ray energies, where all the emission is of non-thermal
origin. Admittedly, not all binary cores in AGN will display
these features. However, the mere identification of a single sys-
tem might provide a unique natural laboratory to study black
hole binaries and the related accretion physics through high-
energy observations.

The SEDs obtained in this work differ from the typical spec-
tra with two bumps well fit by power laws predicted by one-zone
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Fig. 11. Changes in the SED with changes in some of the basic parameters of the basic model. In all cases, zo = 50 ry = Zaee, p = 1.5, and T, = 10.
The upper panels, from left to right, show models with zn,, = 103z, but differ in the value of the magnetic field at the base of the acceleration
region: B(z,.) = 1.8 G and B(z,.c) = 0.06 G, respectively. The models in the lower panels differ in the extension of the acceleration region:

Zmax = 10%z9 and 107z, respectively. In both cases B(z,..) = 0.06 G.

models of AGN jets. In one-zone models, the electron distribu-
tion N(E,z) is usually a single power law in energy for all z,
whether fixed beforehand or calculated from simplified versions
of Eq. (24), which assume a dominant cooling mechanism. In
our model the emission region is extended, inhomogeneous, and
the dominant process of energy loss of the electrons varies along
the jet. The shape of the function N(E, z) is thus very complex
and this directly shows in the SEDs. We also notice that a value
of the magnetic field in the acceleration region of ~1 G or less is
required to avoid the synchrotron component of the SED mask-
ing the EC component. Such fields are usually estimated for
the inner sub-parsec jet (e.g. Marscher & Gear 1985; Dermer
& Schlickeiser 1993; Romero et al. 1995).

Differences in the low-energy cutoff of the EC emission do
not produce noticeable effects. Nevertheless, optical and IR ob-
servations of specific objects might help to find direct signa-
tures of the disks. According to our results, the characteristics of
the SED at very high energies (alongside the features expected
in the emission of the accretion disk in the optical) could pro-
vide a good criterion for the identification of SMBHB candi-
dates. In this energy range, future observations with Cherenkov

telescopes, such as the Cherenkov Telescope Array (CTA; Actis
et al. 2011), will be an important tool to investigate the effects
predicted here.

Once a set of good SMBHB candidates has been identified,
future space-borne gravitational wave detectors can attempt to
find the metric waves produced by these systems.
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