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ABSTRACT

Context. Stellar-mass black holes offer what is perhaps the best scenario to test theories of gravity in the strong-field regime. In
particular, f (R) theories, which have been widely discus in a cosmological context, can be constrained through realistic astrophysical
models of phenomena around black holes.
Aims. We aim at building radiative models of thin accretion disks for both Schwarzschild and Kerr black holes in f (R) gravity.
Methods. We study particle motion in f (R)-Schwarzschild and Kerr space-times.
Results. We present the spectral energy distribution of the accretion disk around constant Ricci scalar f (R) black holes, and constrain
specific f (R) prescriptions using features of these systems.
Conclusions. A precise determination of both the spin and accretion rate onto black holes along with X-ray observations of their
thermal spectrum might allow to identify deviations of gravity from general relativity. We use recent data on the high-mass X-ray
binary Cygnus X-1 to restrict the values of the parameters of a class of f (R) models.
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1. Introduction

General relativity (GR) is consistent, in some cases with good
precision, with observational results (see for instance Will 2006).
However, an energy momentum tensor representing exotic mat-
ter (loosely called “dark energy”, e.g. Li et al. 2011) must be
introduced in the right hand side of Einstein’s equations to fit
the currently available data when these are interpreted in the
framework of the standard cosmological model (based on GR).
Dark energy can be modelled by a cosmological constant, or by
a scalar field with an equation of state given by p = ωDEρ, where
ωDE < −1/3 (Biswas et al. 2010a,b). None of these descriptions
is free of problems, since the energy density associated with the
cosmological constant that is inferred from astronomical obser-
vations is approximately 120 orders of magnitude lower than the
value predicted by field theory (e.g. Weinberg 1989; Capozziello
& Faraoni 2010), whereas the scalar field has features that are at
odds with the scalar fields of particle physics (Sotiriou & Faraoni
2010).

A different approach to explain the cosmological data is to
modify the field equations of the gravitational field, in such a
way that the ensuing theory differs from Einstein’s in the low-
curvature regime. Since there is no a priori fundamental reason
to restrict the gravitational Lagrangian to a linear function of the
Ricci scalar R (see for instance Magnano et al. 1987), more gen-
eral theories can be formulated using nonlinear functions of this
scalar. The so-called f (R) theories (e.g. Capozziello & Faraoni
2010) were first used to mimic the inferred accelerated expan-
sion of the universe by Capoziello (2002). Currently there is in
the literature a handful of f (R)-models in agreement with avail-
able data (De Felice & Tsujikawa 2010).

Although the present revival of f (R) theories is mainly due
to their use in the description of phenomena that take place for
low values of the Riemann curvature, these theories have also
been applied to gravity in the opposite regime. As there is no
direct evidence of the behaviour of the gravitational field for
very large values of the curvature, the early universe and com-
pact objects offer the possibility to find deviations from GR.
Among the studies in modified gravity in the strong regime,
we can mention the successful inflationary model based on the
R+αR2 theory (Starobinsky 1980), and the related studies of re-
heating (Motohashi & Nishizawa 2012) and particle production
(Arbuzova et al. 2012) in the early universe. Also of importance
is the treatment of neutron stars (Cooney et al. 2010) and black
hole solutions.

Different aspects of black hole physics in f (R) theo-
ries have been discussed in the literature by Psaltis et al.
(2008a), Hendi & Momeni (2011), Myung (2011), Myung et al.
(2011), Moon et al. (2011a,b), Hendi et al. (2012), and Habib
Mazharimousavi et al. (2012). Static and spherically symmet-
ric black hole solutions were obtained via perturbation theory
by de la Cruz-Dombriz et al. (2009), whereas black holes with
these symmetries have been studied by means of a near-horizon
analysis by Perez Bergliaffa & De Oliveira (2011). Finally,
f (R)-Kerr-Newman black holes solutions with constant Ricci
scalar have been recently studied by Cembranos and collabo-
rators (Cembranos et al. 2011).

From an astrophysical point of view, thin accretion for the
Schwarzschild space-time in f (R)-gravity has been discussed by
Pun et al. (2008), without including the expected spectra of con-
crete astrophysical black holes or any comparison with observa-
tional data.
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In the present work we investigate the existence of stable
circular orbits in Schwarzschild and Kerr f (R) space-times with
constant Ricci scalar and analyze the main features of accretion
disks around these black holes. In particular, we present temper-
ature and spectral energy distributions for Page-Thorne disks,
and compare the results with those obtained using the standard
Shakura-Sunyaev model.

The paper is organized as follows. In Sect. 2 we provide a
brief review of f (R) theories of gravity. Circular orbits in both
Schwarzschild and Kerr f (R) space-times with constant Ricci
scalar are studied in Sect. 3. Section 4 is devoted to the calcu-
lation of the properties of accretion disks in these space-times.
Consequences for some specific prescriptions for the function f
are discussed in Sect. 5. We close with some considerations on
the potential of astronomical observations to test the strong-field
regime of gravity.

2. f (R) gravity

In f (R) gravity, the Lagrangian of the Hilbert-Einstein action,
given by:

S [g] =
c3

16πG

∫
R
√−g d4x, (1)

is generalized to:

S [g] =
c3

16πG

∫
(R + f (R))

√−g d4x, (2)

where g is the determinant of the metric tensor, and f (R) is an
arbitrary function of the Ricci scalar. In the metric formalism the
field equations are obtained varying Eq. (2) with respect to the
metric:

Rμν(1 + f ′(R)) − 1
2
gμν(R + f (R)) (3)

+ (∇μ∇ν − gμν�) f ′(R) +
16πG

c4
Tμν = 0,

where Rμν is the Ricci Tensor, � ≡ ∇β∇β, f ′(R) = d f (R)/dR, and
the energy momentum tensor is defined by:

Tμν =
−2√−g
δ(
√−gLm)

δgμν
· (4)

Here, Lm stands for the matter Lagrangian.
Equations (3) are a system of fourth-order nonlinear equa-

tions for the metric tensor gμν. An important difference between
them and the Einstein field equations is that in f (R) theories the
Ricci scalar R and the trace T of the energy momentum tensor
are differentially linked, as can be seen by taking the trace of
Eq. (3), which yields:

R(1 + f ′(R)) − 2(R + f (R)) − 3� f ′(R) +
16πG

c4
T = 0. (5)

Hence, depending on the form of the function f , there may be
solutions with traceless energy-momentum tensor and nonzero
Ricci scalar. This is precisely the case of black hole space-times
in the absence of a matter source.

Notice that in the case of constant Ricci scalar R0 without
matter sources, Eqs. (3) can be re-written as:

Rμν = Λgμν,

where:

Λ ≡ f (R0)
f ′(R0) − 1

, (6)

and, by Eq.(5):

R0 =
2 f (R0)

f ′(R0) − 1
· (7)

Hence, in this case, any f (R) theory is formally, but not phys-
ically, equivalent to GR with a cosmological constant given by
Eq. (6)1.

We shall investigate the existence of stable circular orbits in
Schwarzschild and Kerr f (R) space-times with constant Ricci
scalar in the next section.

3. Circular orbits around a black hole in f(R)

3.1. f(R)-Schwarzschild space-time

The Schwarzschild space-time metric in f (R) theories with con-
stant Ricci scalar R0 takes the form (Cembranos et al. 2011):

ds2 = −
[(

c2 − 2GM
r

)
− c2R0

12
r2

]
(8)

dt2 +
dr2[(

1 − 2MG
c2r

)
− R0

12 r2
] + r2

(
dθ2 + sin2 θdφ2

)
,

where R0, given by Eq. (7), can take, in principle, any real value.
Since we are looking for space-time metrics that may represent
astrophysical black holes, we shall select those values of R0 that
lead to acceptable solutions.

The radius r0 of the horizon follows from the condition
g00(r0) = 0. From Eq. (8), the values of r corresponding to the
event horizon satisfy:

c2R0r3 − 12c2r + 24GM = 0. (9)

In terms of the following adimensional quantities:

x ≡ r
rg
, (10)

R0 ≡ R0r2
g, (11)

where rg = GM/c2, this equation takes the form:

R0x3 − 12x + 24 = 0. (12)

We show in Fig. 1 the Ricci scalar as a function of the radial
coordinate of the event horizon. We see that for R0 ∈ (0, 4/9)
there is an inner black hole event horizon and an outer cosmo-
logical horizon, whereas for R0 ≤ 0 there is only one black
hole event horizon. The event and cosmological horizons col-
lapse for R0 = 4/9 and for larger values of the Ricci scalar
naked singularities occur and hence, no black holes are possi-
ble2. We shall, then, restrict ourselves to the study of trajectories
for R0 ∈ (−∞, 4/9].

1 Accretion through thick disks onto Schwarzschild and Kerr black
holes with a repulsive cosmological constant was studied by Rezzolla
et al. (2003), and Slaný & Stuchlík (2005), respectively. These studies
do not analyze spectra or compare results with observational data.
2 The results obtained in our analysis of f (R)-Schwarzschild
space-time with constant Ricci scalar are consistent with those
given by Stuchlík & Hledík (1999) in Schwarzschild-de Sitter and
Schwarzschild-anti de Sitter space-times.
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Fig. 1. Ricci scalar as a function of the radial coordinate of the event
horizon in f (R)-Schwarzschild space-time.

3.1.1. Equations of motion and effective potential
in f (R)-Schwarzschild space-time

The geodesic equations in the metric given in Eq. (8) can be
obtained by means of the Euler-Lagrange equations using the
Lagrangian:

L = −
[(

c2 − 2GM
r

)
− c2R0

12
r2

]
ṫ2 (13)

+
1[(

1 − 2GM
c2r

)
− R0

12 r2
] ṙ2 + r2

(
θ̇2 + sin θ2φ̇2

)
,

where ẋμ ≡ dxμ/dσ, and σ is an affine parameter along the
geodesic xμ(σ). The resulting geodesic equations for t and φ are
(setting θ = π/2):

[(
1 − 2GM

c2r

)
− R0

12
r2

]
ṫ = k, (14)

r2φ̇ = h, (15)

where k and h are constants. An equation for r that is simpler
than the one obtained from the Lagrangian follows from the
modulus of the 4-momentum p, given by gμνxμxν = ε2, where
ε2 = c2 for massive particles, and ε2 = 0 for photons. It takes the
form:

−
[(

c2 − 2GM
r

)
− c2R0

12
r2

]
ṫ2

+
ṙ2[(

1 − 2GM
c2r

)
− R0

12 r2
] + r2φ̇2 = ε2, (16)

with ṫ and φ̇ given by Eqs. (14) and (15), respectively. The set of
Eqs. (14), (15), and (16) completely determine the motion of a
particle in the f (R)-Schwarzschild space-time.

3.1.2. Trajectories of massive particles

Equations (14), (15), and (16) can be used to obtain the so-called
energy equation (e.g. Hobson et al. 2006):

ṙ2 +
h2

r2

[(
1 − 2GM

c2r

)
− R0

12
r2

]

+

(
−2GM

r
− c2R0

12
r2

)
= c2(k2 − 1). (17)

The constant k is defined as k = E/m0c2, where E represents
the total energy of the particle in its orbit, and m0c2 its rest mass
energy. The constant h stands for the angular momentum of the
particle per unit mass. From Eq. (17) we can identify the effec-
tive potential per unit mass as:

Veff(r) =
h2

2r2

(
1 − 2GM

c2r
− R0

12
r2

)
+

1
2

(
−2GM

r
− c2R0

12
r2

)
. (18)

The extrema of the effective potential are obtained by looking
for the roots of the derivative of the latter equation with respect
to the radial coordinate. In terms of x, R0, and the adimensional
angular momentum per unit mass of the particle h = h(crg)−1,
this reads:

dVeff

dx
= c2

(
−h2

x3
+

3h2

x4
+

1
x2
− R0 x

12

)
= 0. (19)

The derivative of Eq. (19) with respect to x gives:

d2Veff

dx2
=

c2

μ2

(
−4R0x4 + 15R0x3 + 12x − 72

)
x4

(
− 3

x + 1
) , (20)

where we have replaced h by (Harko et al. 2009):

h = xc
2

√
1

xc
3 − R0

12√
1 − 3

xc

, (21)

where xc corresponds to the radius of a circular orbit. We have
performed the numerical calculation of the extrema of the effec-
tive potential for different values of R0.

For R0 > 0, as shown by Stuchlík et al. (1999) and Rezzolla
et al. (2003) in Schwarzschild-de Sitter space-time, stable circu-
lar orbits exist for values of the specific angular momentum that
satisfy:

hisco < h < hosco, (22)

where hisco and hosco stand for the local minimum and local max-
imum of the specific angular momentum at the inner and outer
marginally stable radii. From Eq. (20) we see that the existence
and location of the circular orbits depend on the Ricci scalar R0.
By equating Eq. (19) to zero and isolating R0, we obtain the
Ricci scalar as a function of the radial coordinate of the circular
orbits:

R0 =
12 (6 − xc)

(15 − 4xc) xc
3
· (23)

In Fig. 2 we show the plot of the latter equation. We see that
there is an upper limit for the Ricci scalar, R0 = 2.85× 10−3, for
which circular orbits are possible. In Fig. 3 we plot the effective
potential as a function of the radial coordinate. The dots indicate
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Table 1. Location of the event and cosmological horizon, and of the innermost and outermost stable circular orbits for R0 > 0 in f (R)-
Schwarzschild space-time.

R0 Radius Radius Radius innermost Radius outermost
event horizon cosmological horizon stable circular orbit stable circular orbit

10−12 xeh = 2 xch = 3.46 × 106 xisco = 6 xosco = 14 421.70
10−6 xeh = 2 xch = 3463.10 xisco = 6.00016 xosco = 143.45
10−4 xeh = 2 xch = 345.40 xisco = 6.02 xosco = 30.16
10−3 xeh = 2.00067 xch = 108.53 xisco = 6.19 xosco = 13.17
2 × 10−3 xeh = 2.00134 xch = 76.44 xisco = 6.51 xosco = 9.80
2.84 × 10−3 xeh = 2.0019 xch = 63.98 xisco = 7.40 xosco = 7.60

Notes. Here x ≡ r/rg.
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Fig. 2. Function given by Eq. (23). The absolute maximum corresponds
to x = 15/2 and R0 = 2.85 × 10−3.
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Fig. 3. Effective potential for different values of R0 > 0 and h in f (R)-
Schwarzschild space-time. The dots indicate the location of the inner-
most stable circular orbit.

the location of the innermost stable circular orbits. The corre-
sponding values of the event and cosmological horizons, radii of
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Fig. 4. Ricci scalar as a function of the radial coordinate of the event
horizon (line) and of the Ricci scalar as a function of the radial co-
ordinate of the innermost stable circular orbits (dashed line) for R0 ∈
[−1.5, 0.45] in f (R)-Schwarzschild space-time.

the innermost and outermost stable circular orbits, for six differ-
ent values of R0 ∈ (0, 2.85× 10−3) are shown in Table 1. We see
that for increasing values of the Ricci scalar the event horizon
becomes larger than in Schwarzschild space-time in GR as well
as the location of the innermost stable circular orbit.

The extrema of the effective potential for R0 < 0 are all lo-
cated outside the event horizon, as shown in Fig. 4. The value
of the radial coordinate for the event horizon is less than 2 (i.e.
smaller than for Schwarzschild black holes in GR). The location
of the innermost stable circular orbit is closer to the horizon than
that of the Schwarzschild solution in Einstein’s gravity. The limit
R0 → −∞ in Eq. (20) yields:

x3 (−4x + 15) = 0 ⇒ x = 0 ∨ x = 3.75. (24)

The plot of the effective potential corresponding to the values of
the parameters of Table 2 is shown in Fig. 5.

3.2. Kerr space-time in f(R) theories

The axisymmetric, stationary and constant Ricci scalar geometry
that describes a black hole with mass, electric charge and angular

A4, page 4 of 15

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201220378&pdf_id=2
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201220378&pdf_id=3
http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201220378&pdf_id=4


D. Pérez et al.: Accretion disks onto black holes

Table 2. Location of the event horizon, and of the innermost stable cir-
cular orbit for R0 < 0 in f (R)-Schwarzschild space-time.

R0 Radius Radius innermost
event horizon stable circular orbit

−10−3 xeh = 1.999 xisco = 5.86
−10−2 xeh = 1.993 xisco = 5.26
−10−1 xeh = 1.939 xisco = 4.35
−1.5 xeh = 1.541 xisco = 3.83

Notes. Here x ≡ r/rg.
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Fig. 5. Effective potential for different values of R0 < 0 and h in f (R)-
Schwarzschild space-time. The dots indicate the location of the inner-
most stable circular orbit.

momentum was found by Carter (1973), and was used to study
f (R) black holes by Cembranos et al. (2011). The form of the
metric is the following:

ds2 =
ρ2

Δr
dr2 +

ρ2

Δθ
dθ2 (25)

+
Δθ sin2 θ

ρ2

[
a

c dt
Ξ
−

(
r2 + a2

) dφ
Ξ

]2

−Δr

ρ2

(
c dt
Ξ
− a sin2 θ

dφ
Ξ

)2

,

where:

Δr =
(
r2 + a2

) (
1 − R0

12
r2

)
− 2GMr

c2
, (26)

ρ2 = r2 + a2cos θ2, (27)

Δθ = 1 +
R0

12
a2cos2 θ, (28)

Ξ = 1 +
R0

12
a2. (29)

Here M and a denote the mass and angular momentum per unit
mass of the black hole, respectively, and R0 is given by Eq.(7).
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Fig. 6. Ricci scalar as a function of the radial coordinate of the event
horizon for R0 ∈ [−0.3, 1] and a = 0.99 in f (R)-Kerr space-time.

Because of the constancy of pt and pφ along the trajectories,
and of the reflection-symmetry of the metric through the equato-
rial plane, the orbit of any particle with initial condition pθ = 0
will remain in the plane π/2, where the metric has the form:

ds2 = − c2

r2Ξ2

(
Δr − a2

)
dt2 +

r2

Δr
dr2 (30)

− 2ac
r2Ξ2

(
r2 + a2 − Δr

)
dtdφ

+
dφ2

r2Ξ2

[(
r2 + a2

)2 − Δra
2
]
.

Here,

Δr =
(
r2 + a2

) (
1 − R0

12
r2

)
− 2GMr

c2
, (31)

Ξ = 1 +
R0

12
a2. (32)

If R0 → 0, Eq. (30) represents the Kerr space-time metric in GR
as expected.

The equation that yields the position of the event horizon is
obtained by setting 1/grr = 0:

Δr =
(
r2 + a2

) (
1 − R0

12
r2

)
− 2GMr

c2
= 0. (33)

In terms of x, R0, and a ≡ a(rg)−1, this equation takes the form:

(
x2 + a2

) (
1 − R0x2

12

)
− 2x = 0. (34)

In Fig. 6 we plotted the Ricci scalar as a function of the radial
coordinate of the event horizon for R0 ∈ [−0.3, 1] and a = 0.99
(i.e. a nearly maximally rotating black hole, such as Cygnus X1,
Gou et al. 2011). If R0 ∈ (0, 0.6], there are 3 event horizons: the
inner and outer horizons of the black hole and a cosmological
horizon; for R0 > 0.6 there is a cosmological horizon that be-
comes smaller for larger values of R0. If R0 ∈ (−0.13, 0) there
are 2 event horizons. For R0 ≤ −0.13 naked singularities occur.
In the following we shall analyse the existence of stable circular
orbits for R0 ∈ (−0.13, 0.6].
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3.2.1. Equations of motion and effective potential
in f (R)-Kerr space-time

In order to obtain an expression for the effective potential, we
make use of the invariant length of the 4-momentum p:

gμνpμpν = ε
2, (35)

where ε2 = c2 for massive particles and ε2 = 0 for photons. Since
we are only interested in trajectories on the equatorial plane, we
set pθ = 0, and Eq. (35) gives:

gtt(pt)2 + 2gtφpt pφ + g
φφpφ

2 + grr pr
2 = ε2, (36)

where:

pt = kc2, (37)

pφ = −h, (38)

pr = grrṙ. (39)

Substituing Eqs. (37), (38), and (39) into (36), the equation for ṙ2

takes the form:

ṙ2 = grr
[
ε2 − gtt

(
kc2

)2
+ 2gtφhkc2 − gφφh2

]
. (40)

The contravariant components of the space-time metric given by
Eq. (30) are:

gtt =
Ξ2

Δr c2r2

[(
r2 + a2

)2 − Δra
2
]
, (41)

grr = −Δr

r2
, (42)

gtφ =
Ξ2

cΔr r2
a
(
r2 + a2 − Δr

)
, (43)

gφφ = − Ξ
2

Δr r2

(
Δr − a2

)
. (44)

Hence, the energy equation for a massive particle is given by:

1
2

ṙ2 + Veff(r, a,R0, k, h) =
c2

2

(
k2 − 1

)
, (45)

where the effective potential is:

Veff(r, a,R0, k, h) =
c2Δr

2r2
+

c2

2

(
k2 − 1

)
− Ξ

2

2r4
Γ, (46)

and:

Γ ≡
[(

r2 + a2
)

ck − ah
]2 − Δr (ack − h)2 . (47)

3.2.2. Equatorial circular orbits of massive particles

If a massive particle is moving in a circular orbit of radius risco,
the value of the effective potential at any point of the orbit satis-
fies the equation:

Veff(risco, a,R0, k, h) =
c2

2

(
k2 − 1

)
, (48)

so,

dVeff

dr
(r, a,R0, k, h)

∣∣∣∣∣
risco

= 0. (49)

For a stable orbit, the equation:

d2Veff

dr2
(r, a,R0, k, h)

∣∣∣∣∣∣
risco

> 0, (50)

Table 3. Radii of event horizons and circular orbits for a f (R)-Kerr
black hole of angular momentum a = 0.99, for some values of R0 < 0.

R0 Radii event horizons Radius innermost
stable circular orbits

−10−3 xeh1 = 0.86, xeh2 = 1.14 xisco = 1.452
−1.2 × 10−3 xeh1 = 0.86, xeh2 = 1.14 xisco = 1.451
−10−2 xeh1 = 0.86, xeh2 = 1.13 xisco = 1.43
−10−1 xeh1 = 0.91, xeh2 = 1.03 xisco = 1.20
−1.25 × 10−1 xeh1 = 0.96, xeh2 = 0.98 xisco = 1.04

Notes. Here x ≡ r/rg.

must also be satisfied. As shown in Sect. 3.2, there are black
holes if R0 ∈ (−0.13, 0.6].

Numerical calculations of the radius of the innermost stable
circular orbit for several values of R0 < 0, with a = 0.99, show
that the stable circular orbits lay outside the event horizon (see
Table 3). Notice that as the value of the scalar decreases, the
radius of the innermost stable circular orbit becomes smaller.
The radius of the innermost stable circular orbit in Kerr space-
time in GR (risco = 1.4545 rg, in the prograde case) is always
larger than in f (R)-Kerr. In Fig. 7, the effective potential that
correspond to the values of Table 3 are shown.

We follow Stuchlík & Slaný (2004) to study the existence
of stable circular orbits for R0 ∈ (0, 0.6]. The specific angular
momentum of a massive particle in a co-rotating circular orbit
yields (Stuchlík & Slaný 2004):

h = −
2a + axc

(
xc

2 + a2
)

R0

12 − xc

(
xc

2 + a2
) (

1
xc

3 − R0

12

)1/2

xc

[
1 − 3

xc
− a2R0

12 + 2a
(

1
xc

3 − R0

12

)1/2
]1/2

· (51)

We see from the latter equation that circular orbits must satisfy
the following two conditions:

xc <

(
12
R0

)1/3

, (52)

which is the same for f (R)-Schwarzschild space-time with pos-
itive Ricci scalar, and:

1 − 3
xc
− a2R0

12
+ 2a

(
1

xc
3
− R0

12

)1/2

≥ 0. (53)

The minimum and maximum of Eq. (51) give the values of the
specific angular momentum that correspond to the innermost and
outermost stable circular orbit respectively, once the angular mo-
mentum a of the black hole and R0 are fixed. We show in Table 4
the values of such radii for different values of R0, and a = 0.99,
and in Fig. 8 the corresponding plot of the effective potential.
As expected, the radius of inner circular orbit is larger than in
Kerr space-time in GR. We also found, by equating to zero the
derivative of Eq. (51), that stable circular orbits only exist if
R0 ∈ (0, 1.45 × 10−1).

The analysis of the circular orbits presented in this section
will be applied next to the construction of accretion disks around
black holes.

4. Accretion disks in strong gravity

4.1. Standard disk model in general relativity

The first realistic model of accretion disks around black holes
was formulated by Shakura & Sunyaev (1973). They considered
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Table 4. Location of the event and cosmological horizon, and of the innermost and outermost stable circular orbits for R0 > 0 and a = 0.99 in
f (R)-Kerr space-time.

R0 Radii Radius Radius innermost Radius outermost
event horizons cosmological horizon stable circular orbit stable circular orbit

10−6 xeh1 = 0.86, xeh2 = 1.14 xch = 3463 xisco = 1.4545 xosco = 143.59
10−4 xeh1 = 0.86, xeh2 = 1.14 xch = 345.40 xisco = 1.4547 xosco = 30.53
6.67 × 10−4 xeh1 = 0.86, xeh2 = 1.14 xch = 113.12 xisco = 1.4560 xosco = 16.002
10−3 xeh1 = 0.86, xeh2 = 1.14 xch = 108.53 xisco = 1.4567 xosco = 13.93
10−2 xeh1 = 0.85, xeh2 = 1.15 xch = 33.59 xisco = 1.4765 xosco = 6.25
10−1 xeh1 = 0.83, xeh2 = 1.22 xch = 9.80 xisco = 1.92 xosco = 3.22

Notes. Here x ≡ r/rg.
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Fig. 7. Effective potential as a function of the radial coordinate (R0 < 0,
a = 0.99), in f (R)-Kerr space-time. The dots indicate the location of
the innermost stable circular orbit.

that the matter rotating in circular Keplerian orbits around the
compact object loses angular momentum because of the fric-
tion between adjacent layers and spirals inwards. In the process
gravitational energy is released, the kinetic energy of the plasma
increases and the disk heats up, emitting thermal energy.

Novikov, Thorne, and Page (Novikov & Thorne 1973; Page
& Thorne 1974) made a relativistic analysis of the structure of
an accretion disk around a black hole. They assumed the back-
ground space-time geometry to be stationary, axially-symmetric,
asymptotically flat, and reflection-symmetric with respect to the
equatorial plane. They also postulated that the central plane of
the disk coincides with the equatorial plane of the black hole.
This assumption entails that the metric coefficients gtt, gtφ, grr,
gθθ, and gφφ depend only on the radial coordinate r.

The disk is supposed to be in a quasi-steady state (Novikov &
Thorne 1973), so any relevant quantity (for example the density
or the temperature of the gas) is averaged over 2π, a proper radial
distance of order 2H3, and the time interval Δt that the gas takes

3 Here H represents a particular height above the central plane of the
disk (|z| ≤ H � r).
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Fig. 8. Effective potential as a function of the radial coordinate (R0 > 0,
a = 0.99), in f (R)-Kerr space-time. The dots indicate the location of
the innermost stable circular orbit.

to move inward a distance 2H. During Δt, the changes in the
space-time geometry are negligible.

Particles move in the equatorial plane in nearly geodesic or-
bits; consequently, the gravitational forces exerted by the black
hole completely dominate over the radial accelerations due to
pressure gradients.

The expression of the energy flux for a relativistic accretion
disk takes the form (Novikov & Thorne 1973; Page & Thorne
1974):

Q(r) = − Ṁ0

4π
√−g

Ω,r(
Ẽ − ΩL̃

)2

∫ r

risco

(
Ẽ −ΩL̃

)
L̃,rdr, (54)

where Ṁ0 stands for the mass accretion rate, Ω for the angular
velocity and Ẽ and L̃ represent the specific energy and angu-
lar momentum, respectively. The lower limit of the integral risco
corresponds to the location of the innermost stable circular orbit.

The angular velocity Ω, the specific energy Ẽ, and the spe-
cific angular momentum L̃ of the particles moving in circular
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orbits are given by (Harko et al. 2009):

Ω =
dφ
dt
=
−gtφ,r +

√(
−gtφ,r

)2 − gtt,rgφφ,r

gφφ,r
, (55)

Ẽ = − gtt + gtφΩ√−gtt − 2gtφΩ − gφφΩ2
, (56)

L̃ =
gtφ + gφφΩ√−gtt − 2gtφΩ − gφφΩ2

· (57)

Equations (56), and (57) can be derived by writing the effective
potential Veff(r) in terms of the metric coefficients and solving
for Ẽ and L̃ the equations Veff(r) = 0 and Veff ,r(r) = 0. The
formula for the angular velocity Ω = dφ/dt is obtained by sub-
stituing Ẽ, and L̃ into the geodesic equations dt/dτ and dφ/dτ
(Harko et al. 2009).

In the next subsections we calculate the energy flux,
temperature and luminosity of an accretion disk around a
Schwarzschild and a Kerr black hole in GR and f (R) gravity
with constant Ricci scalar, adopting the following values for the
relevant parameters: M = 14.8 M�, Ṁ = 0.472× 1019 g s−1, and
a = 0.99, which are the best estimates available for the well-
known galactic black hole Cygnus-X1 (Orosz et al. 2011; Gou
et al. 2011).

4.1.1. Relativistic accretion disk around Schwarzschild
and Kerr black holes

In order to obtain an expression of the energy flux and tem-
perature of the disk, for the Schwarzschild black hole, we cal-
culate the angular velocity Ω, the specific energy Ẽ and angu-
lar momentum L̃ of the particles in the disk, using the metric
(Schwarzschild 1916):

ds2 = −c2

(
1 − 2GM

c2r

)
dt2 +

(
1 − 2GM

c2r

)−1

dr2 (58)

+r2dθ2 + r2 sin θ2dφ2.

From Eqs. (55)–(57) we get:

Ω =

√
GM
r3
, (59)

Ẽ = c

(
1 − 2GM

c2r

)
√(

1 − 3GM
c2r

) , (60)

L̃ =

√
GM
√

r

c
√(

1 − 3GM
c2r

) · (61)

By replacing these equations in Eq. (54), we obtain:

Q(x) =
3Ṁ0c6

8πx7/2

1

(GM)2

(
1 − 3

x

)−1

(62)

×
⎡⎢⎢⎢⎢⎣√x +

√
3 tanh−1

√
x

3

⎤⎥⎥⎥⎥⎦x

xisco

,

where xisco = 6rg is the location of the innermost stable circular
orbit in Schwarzschild space-time.

By means of Stefan-Bolzmann’s law,

T (r) = z

(
Q(r)
σSB

)1/4

, (63)

Fig. 9. Energy flux as a function of the radial coordinate of an accretion
disk around a Schwarzschild black hole in Shakura-Sunyaev (SS) and
Page-Thorne (PT) models, respectely.

Fig. 10. Temperature as a function of the radial coordinate of an ac-
cretion disk around a Schwarzschild black hole in SS and PT models,
respectively.

(where z stands for the correction due to the gravitational red-
shift), the temperature of the disk can be obtained as a function
of the radial coordinate r.

In Figs. 9 and 10 we plot the energy flux and the temperature
as a function of the radial coordinate for a Schwarzschild black
hole in both Keplerian and relativistic accretion disk models. We
see that GR effects introduce a decrease of the peak of the energy
flux by a factor ≈2, and that the temperature distribution is also
diminished.

The Kerr space-time metric (Kerr 1963) in Boyer-Lindquist
coordinates for θ = π/2 is:

ds2 = −c2

r2

(
Δr − a2

)
dt2 +

r2

Δr
dr2 (64)

−2ac
r2

(
r2 + a2 − Δr

)
dtdφ

+
dφ2

r2

[(
r2 + a2

)2 − Δra
2
]
,
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Fig. 11. Energy flux as function of the radial coordinate for an accretion
disk around a Kerr black hole of angular momentum a = 0.99 in the PT
model.

where:

Δr ≡
(
r2 + a2

)
− 2GMr

c2
· (65)

The expression of the energy flux now becomes:

Q(r) = − Ṁ0

4π
√−g

Ω,r(
Ẽ − ΩL̃

)2

∫ r

risco

(
Ẽ −ΩL̃

)
L̃,rdr, (66)

where:(
Ẽ −ΩL̃

)
L̃,r = − c

2

[
(p1 + p2) p3

]
p4

, (67)

− Ṁ0

4π
√−g

Ω,r(
Ẽ −ΩL̃

)2
=

3Ṁ0

8π
c2

μ2

p5

(p1 + p2)2
, (68)

and the coefficients pi are given by:

p1 = x5/2

(
1 − 2

x
+

a

x3/2

) (
−1 +

a2

x3

)
, (69)

p2 =
(
−a + x3/2

) (
1 +

a2

x2
− 2

a

x3/2

)
, (70)

p3 =

(
1 +

a

x3/2

) (
−1 +

6
x
− 8a

x3/2
+

3a2

x2

)
, (71)

p4 = x3

(
1 − 3

x
+

2a

x3/2

)2 (
−1 +

a2

x3

)
, (72)

p5 =
1

x3/2

(
x3 + a − 2ax3/2

) (
1 − 3

x
+

2a

x3/2

)
· (73)

Here x = r/rg is an adimensional radial coordinate, and a =
a/rg is the angular momentum of the black hole in adimensional
units.

In Figs. 11 and 12 we show the plots of the energy flux and
temperature of an accretion disk around a Kerr black hole of
angular momentum a = 0.99, whose innermost stable circu-
lar orbit is at risco = 1.4545 rg. In Fig. 13 we show the lumi-
nosity of relativistic accretion disks around both Schwarzschild
and Kerr black holes. For comparison, we also present the
Schwarzschild/Shakura-Sunyaev luminosity.

Fig. 12. Temperature as function of the radial coordinate of an accretion
disk around a Kerr black hole of angular momentum a = 0.99 in the PT
model.

Fig. 13. Luminosity as function of the energy for a relativistic accretion
disk around a Schwarzschild and a Kerr black hole (a = 0.99). We
also plot the luminosity as a function of the energy of an accretion disk
around a Schwarzschild black hole that corresponds to the SS model.

The values of the maximum temperature, luminosity, and the
energy of the peak of the emission for all these models are shown
in Table 5. As expected, the highest luminosity corresponds to
a prograding accretion disk around a Kerr black hole. Since the
last stable circular orbit is located closer to the black hole than in
Schwarzschild space-time, thermal radiation is emitted at higher
energies.

4.2. f(R)-gravity

4.2.1. f (R)-Schwarzschild black holes

The energy flux of an accretion disk around a f (R)-
Schwarzschild black hole with metric given by Eq. (8) takes the
form:

Q =
9Ṁ0c6

4π (GM)2

(
1 − 3

x

)−1

x5
√

36
x3 − 3c2R0

∫ x

xisco

(
Ẽ −ΩL̃

)
L̃,rdx, (74)
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Table 5. Values of the energy of the peak of the emission, the maximum temperature, and luminosity of an accretion disk around Schwarzschild
and Kerr black holes (a = 0.99) in the SS and PT models.

Schwarzschild (SS) Schwarzschild (PT) Kerr (PT)
Emax 1007.59 eV 746.94 eV 1654.9 eV
Tmax 0.406 keV 0.277 keV 0.539 keV
L(Emax) 2.42 × 1037 erg s−1 1.22 × 1037 erg s−1 2.26 × 1037 erg s−1

Fig. 14. Temperature as a function of the radial coordinate for some
values of R0 < 0, for a f (R)-Schwarzschild black hole.

where

(
Ẽ −ΩL̃

)
L̃,r = −

√
3

12x3

(
−12x + 72 + 4R0x4 − 15R0x3

)
(
1 − 3

x

) (
12
x3 − R0

)1/2
· (75)

We adopt for the radius of the outer edge of the disk (Dove et al.
1997):

rout = 11risco. (76)

According to the latter equation, if we take for the innermost
stable circular orbit risco = 6.3 rg, the outer egde of the disk
yields approximately 70rg. If larger values of rout are considered,
there are no major differences in the temperature and luminosity
distributions.

We first compute the temperature and luminosity spectra dis-
tributions for R0 < 0, and adopt the values given in Table 2. In
Figs. 14 and 15 we show the plots of the temperature as a func-
tion of the radial coordinate, and of the luminosity as a function
of the energy, respectively. Notice that the corrections due to the
gravitational redshift have been taken into account.

The maximum temperature as well as the luminosity increase
for smaller values of R0 (Figs. 14 and 15). In the four cases pre-
sented, the accretion disk is hotter than in GR, e.g. in a f (R)-
Schwarzschild disk for R0 = −1.5, the maximum temperature
and luminosity are a factor 1.9 and 3.7, respectively, higher. The
energy corresponding to the peak of the emission shifts to higher
values, reaching 1359.20 eV for the set of adopted parameters.

We showed in Sect. 3.1.2 that for R0 > 0, stable circular or-
bits are possible within a minimum and maximum radius. We
see in Table 1 that only for R0 = 10−12 and R0 = 10−6 ac-
cretion disks are possible, if we take for the radius of the outer
edge of the disk rout = 70rg. The values of the location of the

Fig. 15. Luminosity as a function of the energy for some values of R0 <
0, for a f (R)-Schwarzschild black hole.

innermost stable circular orbit, location in the radial coordinate
of the maximum temperature, maximum temperature and lumi-
nosity, and the energy of the peak of the emission are displayed
in Table 7. We conclude that for R0 ∈ (0, 10−6] the tempera-
ture and energy distributions have no significant differences with
Schwarzschild’s distributions in GR.

4.2.2. f (R)-Kerr black holes

We calculate next the energy flux of an accretion disk around a
f (R)-Kerr black hole:

Q(x) = − Ṁ0

4π
√−g

Ω,x(
Ẽ −ΩL̃

)2

∫ x

xisco

(
Ẽ −ΩL̃

)
L̃,xdx, (77)

where:

Ω,x = −36
√

3
c

μ2
η, (78)

η ≡
x1/2

{
12x3 + a

[
12a − aR0x3 − 4

√
36x3 − 3x6R0

]}
(
12x3 + a2R0x3 − 12a2

)2
√−R0x3 + 12

,

L̃ =
2μ (l1 + l2)(

12 + a2R0
)
x
√

l3 + l4
, (79)

L̃,x = −
4x

[
12x3 + a2

(
−12 + R0x3

)]
(l5 + l6 + l7 + l8 + l9)(

12 + a2R0
) √

12x3 − R0x6 (l10 + l11)3/2
, (80)

(
Ẽ −ΩL̃

)
=

12c
√

l3 + l4(
12 + a2R0

) [
12x3 + a2

(−12 + x3R0
)] , (81)
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Table 6. Values of the location of the last stable circular orbit, location in the radial coordinate of the maximum temperature, maximum temperature
and luminosity, and the energy of the peak of the emission for an accretion disk around a f (R)-Schwarzschild black hole with R0 < 0.

f (R)-Schwarzschild R0 = 0 R0 = −10−3 R0 = −10−2 R0 = −10−1 R0 = −1.5
risco/rg 6 5.85 5.26 4.35 3.82
rTmax/rg 10.82 11.04 10.05 7.58 6.45
Tmax 0.277 keV 0.298 keV 0.371 keV 0.468 keV 0.526 keV
Emax 746.94 eV 825.31 eV 1007.59 eV 1230.13 eV 1359.20 eV
L(Emax) 1.22 × 1037 erg s−1 1.97 × 1037 erg s−1 2.91 × 1037 erg s−1 3.93 × 1037 erg s−1 4.5 × 1037 erg s−1

Table 7. Values of the location of the innermost stable circular orbit, location in the radial coordinate of the maximum temperature, maximum
temperature and luminosity, and the energy of the peak of the emission for an accretion disk around a f (R)-Schwarzschild black hole with R0 > 0.

f (R)-Schwarzschild R0 = 0 R0 = 10−6

risco/rg 6 6.00016
rTmax/rg 10.81 10.82
Tmax 0.277 keV 0.277 keV
Emax 746.94 eV 746.94 eV
L(Emax) 1.22 × 1037 erg s−1 1.22 × 1037 erg s−1

and

l1 = −72a3x − 216ax3 + 12x3
√

36x3 − 3x6R0,

l2 = a2
√

36x3 − 3x6R0

[
a2xR0 + 24 + x

(
12 + x2R0

)]
,

l3 = −432a2x2 + x6
(
12 + a2R0

)2
+ 48a3

√
36x3 − 3x6R0,

l4 = 144ax2
√

36x3 − 3x6R0

−12x3
[
36x2 + a4R0 + a2

(
36 − 3x2R0

)]
,

l5 =
[
108ax2

(
−24 − 12x + 5R0x3

)] √
12x3 − R0x6,

l6 = 36a3
(
−48 − 36x + 7R0x3

) √
12x3 − R0x6,

l7 =
√

3a4x
(
−12 + R0x3

) [
−108 + R0x2

(
−3 + R0x3

)]
,

l8 = 36
√

3x5
{
72 + x

[
−12 + R0x2 (−15 + 4x)

]}
,

l9 = 3
√

3a2x2 {864 + xl9a} ,
l9a = [2160 + xl9a1] ,

l9a1 =
(
432 + R0

2x4 (15 + 8x) − 12R0x (21 + 26x)
)
,

l10 = 144 (−3 + x) x5 + a4R0x3
(
−12 + R0x3

)
+48a3

√
36x3 − 3R0x6,

l11 = 144ax2
√

36x3 − 3R0x6 + 12a2x2l11a,

l11a = −36 + x
[
−36 + R0x2 (3 + 2x)

]
.

If we adopt for the radius of the inner edge of the disk 1.4545rg,
according to Eq. (76), rout ≈ 16rg. From Eq. (77) we numerically
calculate the temperature and luminosity for the values shown
in Table 3, taking into account the corrections coming from the
gravitational redshift. The results are displayed in Figs. 16, 17,
and Table 8. We see that the temperature of the disk increases
for smaller values of R0. The ratio of the maximum temperature
between the GR and f (R) cases, with R0 = −1.25×10−1, is 1.20.
The peak of the emission rises a factor of 2, and the correspond-
ing energy is shifted towards higher energies.

Since the radius of the outer edge of the disk is 16rg, we see
from Table 4 that accretion disks are only possible for R0 = 10−6

and R0 = 10−4, until up R0 = 6.67×10−4. For such values of R0,
we show in Table 9 the values of the location of the last stable
circular orbit, maximum temperature, luminosity, and the energy

Fig. 16. Temperature as a function of the radial coordinate for some
values of R0 < 0 of a f (R)-Kerr black hole of angular momentum a =
0.99, corrected by gravitational redshift.

Fig. 17. Luminosity as a function of the energy for some values of R0 <
0, for a f (R)-Kerr black hole of angular momentum a = 0.99.
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Table 8. Location of the last stable circular orbit and maximum temperature, maximum temperature, luminosity, and energy of the peak of the
emission for an accretion disk around a f (R)-Kerr black hole with R0 < 0 and a = 0.99.

f (R)-Kerr R0 = 0 R0 = −10−3 R0 = −1.2 × 10−3

risco/rg 1.4545 1.4523 1.4518
rTmax/rg 3.79 3.79 3.79
Tmax 0.539 keV 0.54119 keV 0.54148 keV
Emax 1659.4 eV 1659.4 eV 1659.4 eV
L(Emax) 2.26 × 1037erg s−1 2.38 × 1037erg s−1 2.41 × 1037erg s−1

f (R)-Kerr R0 = −10−2 R0 = −10−1 R0 = −1.25 × 10−1

risco/rg 1.4325 1.2017 1.0419
rTmax/rg 3.85 3.85 3.78
Tmax 0.553 keV 0.663 keV 0.652 keV
Emax 1833.52 eV 2025.9 eV 2025.9 eV
L(Emax) 2.94 × 1037erg s−1 4.23 × 1037erg s−1 4.60 × 1037erg s−1

Table 9. Values of the location of the last stable circular orbit, location in the radial coordinate of the maximum temperature, maximum temperature
and luminosity, and the energy of the peak of the emission for an accretion disk around a f (R)-Kerr black hole with R0 > 0 and a = 0.99.

f (R)-Kerr R0 = 0 R0 = 10−4 R0 = 6.67 × 10−4

risco/rg 1.4545 1.4547 1.4559
rTmax/rg 3.79 3.79 3.79
Tmax 0.53942 keV 0.53927 keV 0.53843 keV
Emax 1659.4 eV 1659.4 eV 1659.4 eV
L(Emax) 2.26 × 1037 erg s−1 2.25 × 1037 erg s−1 2.09 × 1037 erg s−1

Fig. 18. Temperature as a function of the radial coordinate for some
values of R0 > 0, for a f (R)-Kerr black hole of angular momentum
a = 0.99.

of the peak of the emission, and in Figs. 18 and 19, the tem-
perature and luminosity distributions respectively. As in f (R)-
Schwarzschild black holes with positive Ricci scalar, these dif-
ferences are minor.

We proceed now to examine some specific forms of the func-
tion f , and the constraints imposed on them by the previous
analysis.

5. Limits on specific prescriptions for f(R)

As discussed in Sects. 3.1.2 and 3.2.2, the existence of
Page-Thorne disks around f (R) black holes imposes the follow-
ing limits on R0:

– f (R)-Schwarzschild space-time:

R0 ∈ (−∞; 10−6], (82)

Fig. 19. Luminosity as a function of the energy for some values of R0 >
0, for a f (R)-Kerr black hole of angular momentum a = 0.99.

– f (R)-Kerr space-time:

R0 ∈
[
−1.2 × 10−3; 6.67 × 10−4

]
. (83)

As we shall see in Sect. 6, contemporary observations of Cygnus
X-1 rule out accretion disks around f (R)-Schwarzschild black
holes, since the maximum temperature obtained in such models
is lower than the inferred through observations (Gou et al. 2011).
Hence, we will only consider the values of R0 given by expres-
sion (83). We shall show in this section how these values lead
to limits on the parameters of two examples of f (R) theories via
Eq. (7). We shall also impose the following viability conditions,
to be satisfied by any f (R) (Cembranos et al. 2011):

−1 < f ′(R0) < 0, (84)

f ′′(R0) > 0. (85)
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5.1. f(R) = α Rβ

The parameters α, β and the Ricci scalar are related by Eq. (7)
as follows:

R0 =

[
1

α (β − 2)

] 1
β−1

· (86)

Introducing the adimensional parameter α′ = Rβ−1
g α with Rg ≡

r−2
g , this equation can be written as

R0 =

[
1

α′ (β − 2)

] 1
β−1

· (87)

Notice the condition β > 0 to ensure the GR limit for small
values of the Ricci scalar R. Let us consider first the case of a
positive Ricci scalar, which leads to:

Case I

α′ > 0 ∧ β > 2, (88)

or

α′ < 0 ∧ β < 2, (89)

Case II

α′ < 0 ∧ β > 2, (90)

or

α′ > 0 ∧ β < 2, (91)

and 1/(β − 1) an even number, that is:

β = 1 +
1

2n
, (92)

with n ∈ Z. By isolating α′ from Eq. (87), we obtain the function:

α′(β) =
1

R0
β−1

(
1
β − 2

)
· (93)

We show in Fig. 20 the plot of α′ as a function of β (with β > 0)
for fixed values of the Ricci scalar. We see that for β ∈ (0, 2),
α′ ∈ (−∞, 0). For β = 2, Eq. (93) is not defined, while for β > 2,
α′ takes large positive values. Since α needs to be small in order
to recover GR for small values of the Ricci scalar, the case α′ >
0, β > 2 is discarded. Hence, we obtain the following restrictions
on the parameters:

α′ ∈ (−∞; 0) ∧ β ∈ (0; 2) ∧ R0 ∈ (0; 6.67 × 10−4].

For negative values of the Ricci scalar, from Eq. (93) we require
that:

1 − β = 2m, ⇒ βodd = 1 − 2m, (94)

or:

1 − β = 2m + 1, ⇒ βeven = −2m, (95)

where m ∈ Z−0 , so that β > 0. If m = 0, β = 1 and α′ = α = −1.
These values of the parameters lead to f (R) = −R, which does
not reduce to GR. For β = 2, Eq. (93) is not defined. If β ≥ 3 and
is an odd number, α′ takes positive large values, while if β ≥ 4
and is an even number α′ is large and negative. Since α′ has

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
�4

�3

�2

�1

0

Β

Α
'

Ro � 10�3

Ro�10�4

Ro�10�6

Fig. 20. α′ as a function of β for different values of R0.

to be small to recover GR for small values of the Ricci scalar,
we conclude that negative values of R0 are not allowed in this
theory.

We now restrict the values of α and β according to Eqs. (84)
and (85). The first and second derivative for the given f function
are:

f ′(R) = αβRβ−1, (96)

f ′′(R) = αβ (β − 1) Rβ−2. (97)

The restrictions over α and β that satisfy Eq. (85) are:

α > 0 ∧ β > 1, (98)

or

α < 0 ∧ β ∈ (0, 1). (99)

The condition given by Eq. (98) is discarded because it does not
satisfy Eq. (93). The viability condition expressed by Eq. (84)
takes the form:

−1 < αβR0
β−1 < 0. (100)

We can constrain the values of α using the latter inequality as
follows:

0 < β < 1.

By multiplying by R0
β−1 α the latter restrictions yields:

0 > αβR0
β−2 > αR0

β−1. (101)

In order to satisfy Eq. (100):

αR0
β−1 > −1 ⇒ α >

−1

R0
β−1
·

If β = 0, α > − R0, and for β = 1, α > −1. The set of values for
α is α ∈ (−R0, 0).

We conclude that the values of α and β that are permitted by
our model as well as by the two viability conditions are:

α ∈ (−R0; 0) ∧ β ∈ (0; 1) ∧ R0 ∈ (0; 6.67× 10−4].
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5.2. f(R) = R ε ln R
α

In this case, the parameters ε and α, and the Ricci scalar are
related by Eq. (7) in the simple form:

α = R0 exp

(
1
ε
− 1

)
. (102)

Dividing by Rg, we obtain α′ = R0 exp
(

1
ε
− 1

)
. For R0 > 0, the

function α′(ε) is always positive, while it is negative for all ε if
R0 < 0. The constrains over ε and α that follow from Eq. (7) are:

– R0 ∈ (0; 6.67 × 10−4]

ε ∈ (−∞; 0) ∧ α′ ∈ (0; e−1 R0),

or

ε ∈ (0;∞) ∧ α′ ∈ (e−1 R0;∞),

– R0 ∈ [−1.2 × 10−3; 0)

ε ∈ (−∞; 0) ∧ α′ ∈ (−e−1 |R0| ; 0),

or

ε ∈ (0;∞) ∧ α′ ∈ (−∞;−e−1 |R0|).
The first and second derivative of the function f take the form:

f ′(R) = ε
(
1 + ln

R
α

)
, (103)

f ′′(R) =
ε

R
· (104)

The condition f ′′(R0) > 0 is satisfied if ε > 0 ∧ R0 > 0, or
ε < 0 ∧ R0 < 0. Equation (84) in adimensional form is:

−1 < ε

(
1 + ln

R0

α′

)
< 0. (105)

This equation, together with (104), yields:

– For ε > 0 and R0 > 0, α′ ∈
(
e R0; R0 exp

{(
1
ε
+ 1

)})
.

– For ε < 0 and R0 < 0,
α′ ∈

(
−e |R0|;−|R0| exp

{
1 − 1

|ε|
})
·

Summarizing all the constraints, we have that:

R0 ∈ (0; 6.67 × 10−4], ε > 0, α′ ∈ (e−1 R0;∞), (106)

α′ ∈
(
e R0; R0 exp

{(
1
ε
+ 1

)})
,

and

R0 ∈ [−1.2 × 10−3; 0), ε < 0, α′ ∈ (−e−1 |R0|; 0), (107)

α′ ∈
(
−e |R0|;−|R0| exp

{
1 − 1
|ε|

})
·

The first group of constraints is fulfilled for ε > 0, while in the
second group for only ε ∈ (−1/2, 0). We conclude that for the
f (R) under scrutiny, the values

R0 ∈ (0; 6.67 × 10−4], ε > 0, α′ ∈ (e R0;∞), (108)

and,

R0 ∈ [−1.2 × 10−3; 0), ε ∈ (−1/2, 0), α′ ∈
(
−e−1 |R0|; 0

)
(109)

are allowed.

6. Discussion

The results presented in Sect. 4 can be compared with current ob-
servational data to derive some constraints on a given f (R) the-
ory. In order to illustrate this assertion we shall consider Cygnus
X-1, which is the most intensively studied black hole binary sys-
tem in the Galaxy. A series of recent high-quality papers (Reid
et al. 2011; Orosz et al. 2011; Gou et al. 2011) have provided
an unprecedented set of accurate measurements of the distance,
the black hole mass, spin parameter a, and the orbital inclination
of this source. This opens the possibility to constrain modified
theories of gravity with rather local precision observations of as-
trophysical objects in the Galaxy.

Cygnus X-1 was discovered at X-rays by Bowyer et al.
(1965). Early dynamical studies of the compact object suggested
the presence of an accreting black hole (e.g. Bolton 1972). The
distance to Cygnus X-1 is currently estimated to be 1.86+0.12

−0.11 kpc
(Reid et al. 2011). This value was determined via trigonomet-
ric parallax using the Very Long Baseline Array (VLBA). At
this distance, the mass of the black hole is (Orosz et al. 2011)
M = 14.8 M�. This is the value adopted in all calculations pre-
sented in the previous sections.

The source has been observed in both a low-hard state, dom-
inated by the emission of a hot corona (e.g., Dove et al. 1997;
Gierlinski et al. 1997; Poutanen 1998), and a high-soft state,
dominated by the accretion disk, which in this state goes all the
way down to the last stable orbit. In the low-hard state, where
the source spends most of the time, a steady, non-thermal jet is
observed (Stirling et al. 2001). The jet is absent in the thermal
state. Therefore, in this latter state a clearer X-ray spectrum can
be obtained.

The accretion rate and the spin parameter of the hole are
∼0.472 × 1019 g s−1 and 0.99, respectively, according to esti-
mates from a Kerr plus black-body disk model (Gou et al. 2011).
These GR models yield a spectral energy distribution with a
maximum at Emax ∼ 1.6 keV. On the contrary, f (R)-models with
negative curvature correspond to a low maximum temperature,
lower even than what is expected for the (unrealistic) case of a
Schwarzschild black hole. Therefore, we can presume that a fit
of f (R)-Kerr models to the data would also prefer high values of
maximum temperature, i.e., ones with non-negative curvature.
Models with accretion rates and spin close to those obtained
by Gou et al. (2011) and small positive curvature seem viable,
something that is consistent with an asymptotic behaviour cor-
responding to a de Sitter space-time endowed with a small and
positive value of the cosmological constant.

Deep X-ray studies with Chandra satellite might impose
more restrictive limits, especially if independent constraints onto
the accretion rate become available.

7. Conclusions

We have studied stable circular orbits and relativistic accretion
disks around Schwarzschild and Kerr black holes in f (R) grav-
ity with constant Ricci curvature in the strong regime. We have
found that stable disks can be formed only for curvatures in the
ranges of (−∞, 10−6] and [−1.2× 10−3, 6.67× 10−4] in the cases
of Schwarzschild and Kerr black holes, respectively. Current ob-
servations of Cygnus X-1 in the soft state rule out curvature val-
ues below −1.2× 10−3. Additional constrains can be imposed on
specific prescriptions of f (R) gravity. In particular, logaritmic-
gravity prescriptions are strongly constrained by observational
data. Future high-precision determination of the parameters of
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other black hole candidates can be used to impose more restric-
tive limits to extended theories of gravity.
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