367 research outputs found

    Optical properties of periodic systems within the current-current response framework: pitfalls and remedies

    Get PDF
    We compare the optical absorption of extended systems using the density-density and current-current linear response functions calculated within many-body perturbation theory. The two approaches are formally equivalent for a finite momentum q\mathbf{q} of the external perturbation. At q=0\mathbf{q}=\mathbf{0}, however, the equivalence is maintained only if a small qq expansion of the density-density response function is used. Moreover, in practical calculations this equivalence can be lost if one naively extends the strategies usually employed in the density-based approach to the current-based approach. Specifically we discuss the use of a smearing parameter or of the quasiparticle lifetimes to describe the finite width of the spectral peaks and the inclusion of electron-hole interaction. In those instances we show that the incorrect definition of the velocity operator and the violation of the conductivity sum rule introduce unphysical features in the optical absorption spectra of three paradigmatic systems: silicon (semiconductor), copper (metal) and lithium fluoride (insulator). We then demonstrate how to correctly introduce lifetime effects and electron-hole interactions within the current-based approach.Comment: 17 pages, 6 figure

    Syndepositional diagenetic control of molybdenum isotope variations in carbonate sediments from the Bahamas

    Get PDF
    © 2016 Elsevier B.V. Molybdenum (Mo) isotope variations recorded in black shales provide important constraints on marine paleoredox conditions. However, suitable shales are not ubiquitous in the geologic record. Moreover, reliable reconstruction of Mo isotope records from shales requires deposition from a water column containing very high concentrations of sulfide-a condition which is both rare and difficult to verify with certainty when examining preserved sediments. The utility of Mo isotopic records could be improved if reconstructions were possible using alternative lithologies, such as marine carbonates, which are more abundant in the geologic record.Here, we focus on the role of early diagenesis in determining the Mo isotopic composition preserved in shallow-water carbonate sediments from four push cores collected in different shallow-water depositional environments in the Bahamas. In contrast with carbonate primary precipitates, which generally contain 10 ppm Mo). The extent of this authigenic enrichment appears to be driven by high concentrations of hydrogen sulfide in the porewaters. In cores with the least authigenic Mo enrichment and lowest pore water sulfide, Mo isotopes are ~1-1.2‰ lighter than seawater, while cores with greater Mo enrichments and higher pore water sulfide approach seawater Mo isotope values (2.2-2.5‰), even under oxic bottom water conditions. However, the sensitivity of bulk carbonate ÎŽ98Mo to syndepositional diagenetic conditions potentially complicates interpretation of a carbonate Mo isotope paleoredox proxy. Robust reconstruction of seawater Mo isotopic composition from carbonates will thus require the ability to place constraints on early diagenetic conditions of pore waters at the time of deposition. We show that in order to record seawater Mo isotope values, carbonate pore waters must contain 50-100 ÎŒM H2Saq, which is achieved only in organic- and sulfide-rich carbonate sediments

    Galactic abundance gradients from Cepheids : On the iron abundance gradient around 10-12 kpc

    Full text link
    Context: Classical Cepheids can be adopted to trace the chemical evolution of the Galactic disk since their distances can be estimated with very high accuracy. Aims: Homogeneous iron abundance measurements for 33 Galactic Cepheids located in the outer disk together with accurate distance determinations based on near-infrared photometry are adopted to constrain the Galactic iron gradient beyond 10 kpc. Methods: Iron abundances were determined using high resolution Cepheid spectra collected with three different observational instruments: ESPaDOnS@CFHT, Narval@TBL and [email protected] ESO/MPG telescope. Cepheid distances were estimated using near-infrared (J,H,K-band) period-luminosity relations and data from SAAO and the 2MASS catalog. Results: The least squares solution over the entire data set indicates that the iron gradient in the Galactic disk presents a slope of -0.052+/-0.003 dex/kpc in the 5-17 kpc range. However, the change of the iron abundance across the disk seems to be better described by a linear regime inside the solar circle and a flattening of the gradient toward the outer disk (beyond 10 kpc). In the latter region the iron gradient presents a shallower slope, i.e. -0.012+/-0.014 dex/kpc. In the outer disk (10-12 kpc) we also found that Cepheids present an increase in the spread in iron abundance. Current evidence indicates that the spread in metallicity depends on the Galactocentric longitude. Finally, current data do not support the hypothesis of a discontinuity in the iron gradient at Galactocentric distances of 10-12 kpc. Conclusions: The occurrence of a spread in iron abundance as a function of the Galactocentric longitude indicates that linear radial gradients should be cautiously treated to constrain the chemical evolution across the disk.Comment: 5 tables, 8 figures, Accepted in A&

    A construction for a counterexample to the pseudo 2-factor isomorphic graph conjecture

    Full text link
    A graph GG admiting a 22-factor is \textit{pseudo 22-factor isomorphic} if the parity of the number of cycles in all its 22-factors is the same. In [M. Abreu, A.A. Diwan, B. Jackson, D. Labbate and J. Sheehan. Pseudo 22-factor isomorphic regular bipartite graphs. Journal of Combinatorial Theory, Series B, 98(2) (2008), 432-444.] some of the authors of this note gave a partial characterisation of pseudo 22-factor isomorphic bipartite cubic graphs and conjectured that K3,3K_{3,3}, the Heawood graph and the Pappus graph are the only essentially 44-edge-connected ones. In [J. Goedgebeur. A counterexample to the pseudo 22-factor isomorphic graph conjecture. Discr. Applied Math., 193 (2015), 57-60.] Jan Goedgebeur computationally found a graph G\mathscr{G} on 3030 vertices which is pseudo 22-factor isomorphic cubic and bipartite, essentially 44-edge-connected and cyclically 66-edge-connected, thus refuting the above conjecture. In this note, we describe how such a graph can be constructed from the Heawood graph and the generalised Petersen graph GP(8,3)GP(8,3), which are the Levi graphs of the Fano 737_3 configuration and the M\"obius-Kantor 838_3 configuration, respectively. Such a description of G\mathscr{G} allows us to understand its automorphism group, which has order 144144, using both a geometrical and a graph theoretical approach simultaneously. Moreover we illustrate the uniqueness of this graph

    A Characterization of Graphs with Small Palette Index

    Get PDF
    Given an edge-coloring of a graph G, we associate to every vertex v of G the set of colors appearing on the edges incident with v. The palette index of G is defined as the minimum number of such distinct sets, taken over all possible edge-colorings of G. A graph with a small palette index admits an edge-coloring which can be locally considered to be almost symmetric, since few different sets of colors appear around its vertices. Graphs with palette index 1 are r-regular graphs admitting an r-edge-coloring, while regular graphs with palette index 2 do not exist. Here, we characterize all graphs with palette index either 2 or 3 in terms of the existence of suitable decompositions in regular subgraphs. As a corollary, we obtain a complete characterization of regular graphs with palette index 3

    Automated data reduction workflows for astronomy

    Full text link
    Data from complex modern astronomical instruments often consist of a large number of different science and calibration files, and their reduction requires a variety of software tools. The execution chain of the tools represents a complex workflow that needs to be tuned and supervised, often by individual researchers that are not necessarily experts for any specific instrument. The efficiency of data reduction can be improved by using automatic workflows to organise data and execute the sequence of data reduction steps. To realize such efficiency gains, we designed a system that allows intuitive representation, execution and modification of the data reduction workflow, and has facilities for inspection and interaction with the data. The European Southern Observatory (ESO) has developed Reflex, an environment to automate data reduction workflows. Reflex is implemented as a package of customized components for the Kepler workflow engine. Kepler provides the graphical user interface to create an executable flowchart-like representation of the data reduction process. Key features of Reflex are a rule-based data organiser, infrastructure to re-use results, thorough book-keeping, data progeny tracking, interactive user interfaces, and a novel concept to exploit information created during data organisation for the workflow execution. Reflex includes novel concepts to increase the efficiency of astronomical data processing. While Reflex is a specific implementation of astronomical scientific workflows within the Kepler workflow engine, the overall design choices and methods can also be applied to other environments for running automated science workflows.Comment: 12 pages, 7 figure

    First constraints on the magnetic field strength in extra-Galactic stars: FORS2 observations of Of?p stars in the Magellanic Clouds

    Get PDF
    Massive O-type stars play a dominant role in our Universe, but many of their properties remain poorly constrained. In the last decade magnetic fields have been detected in all Galactic members of the distinctive Of?p class, opening the door to a better knowledge of all O-type stars. With the aim of extending the study of magnetic massive stars to nearby galaxies, to better understand the role of metallicity in the formation of their magnetic fields and magnetospheres, and to broaden our knowledge of the role of magnetic fields in massive star evolution, we have carried out spectropolarimetry of five extra-Galactic Of?p stars, as well as a couple of dozen neighbouring stars. We have been able to measure magnetic fields with typical error bars from 0.2 to 1.0 kG, depending on the apparent magnitude and on weather conditions. No magnetic field has been firmly detected in any of our measurements, but we have been able to estimate upper limits to the field values of our target stars. One of our targets, 2dFS 936, exhibited an unexpected strengthening of emission lines. We confirm the unusual behaviour of BI 57, which exhibits a 787 d period with two photometric peaks and one spectroscopic maximum. The observed strengthening of the emission lines of 2dFS 936, and the lack of detection of a strong magnetic field in a star with such strong emission lines is at odd with expectations. Together with the unusual periodic behaviour of BI 57, it represents a challenge for the current models of Of?p stars. The limited precision that we obtained in our field measurements (in most cases as a consequence of poor weather) has led to field-strength upper limits that are substantially larger than those typically measured in Galactic magnetic O stars. Further higher precision observations and monitoring are clearly required.Comment: Accepted by A&

    Biological effects on uranium isotope fractionation (\u3csup\u3e238\u3c/sup\u3eU/\u3csup\u3e235\u3c/sup\u3eU) in primary biogenic carbonates

    Get PDF
    © 2018 Elsevier Ltd Determining whether U isotopes are fractionated during incorporation into biogenic carbonates could help to refine the application of 238U/235U in CaCO3 as a robust paleoredox proxy. Recent laboratory experiments have demonstrated that heavy uranium (U) isotopes were preferentially incorporated into abiotic aragonite, with an isotope fractionation of ∌0.10‰ (238U/235U). In contrast, no detectable U isotope fractionation has been observed in most natural primary biogenic carbonates, but the typical measurement precision of these studies was ±0.10‰ and so could not resolve a fractionation of the magnitude observed in the laboratory. To resolve this issue, we have developed a high precision 238U/235U method (±0.02‰ 2 SD) and utilized it to investigate 238U/235U in primary biogenic carbonates including scleractinian corals, calcareous green and red algae, echinoderms, and mollusks, as well as ooids from the Bahamas, Gulf of California, and French Polynesia. Our results reveal that many primary biogenic carbonates indeed fractionate U isotopes during U incorporation, and that this fractionation is in the same direction as observed in abiotic CaCO3 coprecipitation experiments. However, the magnitude of isotope fractionation in biogenic carbonates is often smaller than that predicted by abiotic CaCO3 coprecipitation experiments (0.00–0.09‰ vs. 0.11 ± 0.02‰), suggesting that one or more processes suppress U isotope fractionation during U incorporation into biogenic carbonates. We propose that closed-system behavior due to the isolation of the local calcificiation sites from ambient seawater, and/or kinetic/disequilibrium isotope fractionation caused by carbonate growth kinetics, explains this observation. Our results indicate that U isotope fractionation between biogenic carbonates and seawater might help to constrain U partition coefficients, carbonate growth rates, or seawater chemistry during coprecipitation

    Optical properties of bcc transition metals in the range 0-40 eV

    Get PDF
    We present a systematic analysis of the optical properties of bcc transition metals in the groups VB: V, Nb, and Ta, and VIB: paramagnetic Cr, Mo, and W. For this we use our formulation of time-dependent current-density-functional theory for the linear response of metals. The calculated dielectric and electron energy-loss functions are compared with our ellipsometry measurements and with data reported in literature, showing an overall good agreement. The experimental data of the dielectric functions presented by Nestell and Christy and by Weaver differ mostly in the low-frequency region. However, we found that their reflectivity data are in very good agreement up to about 3 eV. We attribute this apparent discrepancy to the Drude-like extrapolation model used by Weaver in the Kramers-Kronig procedure to extract the optical constants from their reflectivity data. Our experiments are in good agreement with Nestell and Christy's data. The calculated absorption spectra show some deviations from the experiments, in particular in the 3d metals. We assign the spectra in terms of transitions between pairs of bands and we analyze which parts of the Brillouin zone are mainly involved in the absorption. Our results suggest that the blueshift of some spectral features in our calculations can be attributed mainly to the incorrect description of the virtual d bands by the approximations used for the ground state exchange-correlation functional. These virtual bands are too weakly bound by the local density and generalized gradient approximations, in particular in the 3d metals. We calculate separately the inter- and intraband contributions to the absorption and we show using a k center dot p analysis that, within the scalar-relativistic approximation, interband transitions contribute to the absorption already at frequencies well below 0.5 eV. This finding makes questionable the Drude-like behavior normally assumed in the experimental analysis of the linear response. We find that the combination of the Drude model in which we use the calculated plasma frequency and an optimized relaxation time, and the calculated interband response can well describe the experimental spectra. The electron energy-loss spectra are very well reproduced by our calculations showing in each metal a dominant plasmon peak at about 22-24 eV, well above the corresponding Drude-like free-electron plasma frequency, and additional features in the range 10-15 eV. We show that the renormalization of the plasma frequency is due to the interplay between inter- and intraband processes, and that the additional features arise from the rich structure in the dielectric function caused by interband transitions.</p
    • 

    corecore