2,946 research outputs found

    Long Term Air Quality Analysis in Reference to Thermal Power Plants Using Satellite Data in Singrauli Region, India

    Get PDF
    The exponentially growing population and related anthropogenic activities have led to modifications in local environment. The change in local environment, evolving pattern of land use, concentrations of greenhouse gases and aerosols alter the energy balance of our climate system. This alteration in climate is leading to pre-mature deaths worldwide. This study analyses the air quality of Singrauli region, Madhya Pradesh, India for the past 15 years. Otherwise known as Urjanchal “the energy capital” of India has been declared as critically polluted by CPCB. The study provides an updated list of thermal power plants in the study area and their emission effects on the local environment. The pollutants analyzed in the study are carbon dioxide, methane, nitrogen dioxide, Sulphur dioxide and particulate matter. Long term remotely sensed data was obtained from NASA Giovanni for past 15 years. Statistical analysis is used to characterize seasonal and annual variations of trace gases in the study area. The study concluded that Methane, Carbon dioxide, Nitrogen dioxide and Sulphur dioxide are on an increasing trend with an average rate of 1.03, 0.99, 2.15 and 1.09 annually. Secondly, Methane & SO2, PM2.5 & NO2, PM10 & NO2, CO2 & Methane and PM2.5 & PM10 have strong correlations with a 95% significance. Furthermore, Methane, SO2 and CO2 exhibit cyclic variation with change in season. The study also indicated that maximum aerosols present in the study area are a result of anthropogenic activities

    Analysis of Air and Soil Quality around Thermal Power Plants and Coal Mines of Singrauli Region, India

    Get PDF
    Singrauli region is known as the energy capital of India, as it generates nearly 21 GW of electricity, supplied to various parts of the northern India. Many coal-based Thermal Power Plants (TPPs) using coal from several nearby coal mines, and numerous industries are set up in this region which has made it as one of the highly polluted regions of India. In the present study, detailed temporal analysis and forecast of carbon dioxide (CO2), nitrogen dioxide (NO2), sulfur dioxide (SO2), and methane (CH4) concentrations retrieved from satellite data have been carried out for the periods 2005–2020. Based on the classical multiplicative model and using linear regression, the maximum concentration of CO2, NO2, SO2, and CH4 in the year 2025 is found to be 422.59 ppm, 29.28 ppm, 0.23 DU, and 1901.35 ppbv, respectively. Detailed analysis shows that carbon dioxide has a 95% correlation with all other trace gases. We have also carried out the geo-accumulation index for the presence of various contaminants in the soil of this region. The geo-accumulation index shows that soil in and around thermal power plants and coal mines is contaminated by heavy metals. The cumulative index shows that soil around Hindalco industries, Bina coal mines, Khadia coal mines, and coal-based TPPs (Anpara and Vindhayachal) are highly polluted and a threat to human population living in the region

    Evaluation of the Oxidative Stress Response of Aging Yeast Cells in Response to Internalization of Fluorescent Nanodiamond Biosensors

    Get PDF
    Fluorescent nanodiamonds (FNDs) are proposed to be used as free radical biosensors, as they function as magnetic sensors, changing their optical properties depending on their magnetic surroundings. Free radicals are produced during natural cell metabolism, but when the natural balance is disturbed, they are also associated with diseases and aging. Sensitive methods to detect free radicals are challenging, due to their high reactivity and transiency, providing the need for new biosensors such as FNDs. Here we have studied in detail the stress response of an aging model system, yeast cells, upon FND internalization to assess whether one can safely use this biosensor in the desired model. This was done by measuring metabolic activity, the activity of genes involved in different steps and the locations of the oxidative stress defense systems and general free radical activity. Only minimal, transient FND-related stress effects were observed, highlighting excellent biocompatibility in the long term. This is a crucial milestone towards the applicability of FNDs as biosensors in free radical research

    Seasonal response of benthic foraminifera to anthropogenic pressure in two stations of the Gulf of Trieste (northern Adriatic Sea, Italy): the marine protected area of Miramare versus the Servola water sewage outfall

    Get PDF
    A seasonal survey of living benthic foraminifera was performed in 2013 in the Gulf of Trieste (N Adriatic Sea) to compare two marine coastal sites with different degrees of anthropogenic influence. An assessment of ecological quality statuses showed that the station located near the end of an urban pipeline (Ser station), has worse ecological conditions than the site located in a protected marine area (Res station) all year around. Stressed conditions at Ser station were mainly related to high contents of total organic carbon (TOC) and Zn in the bioavailable fraction, which were a limiting factor for the studied foraminiferal communities. Ammonia tepida, Bolivina spp., and Bulimina spp., which characterised this station, were the most tolerant taxa of the studied assemblage. Conversely, Elphidium spp., H. depressula, N. iridea, Quiqueloculina spp., R. nana and Textularia spp., could be considered less tolerant species as they benefitted from the less stressful conditions recorded at Res station, despite slightly higher concentrations of some potentially toxic elements (PTEs), especially Pb, being recorded in this station in comparison to Ser station. Furthermore, foraminiferal assemblages were found to be quite resilient over an annual cycle, being able to recover from a seasonal unbalanced state to a mature one. The beginning of spring and latest summer would be the best period to assess the ecological quality status to avoid any under- or overestimation of the health of the environment

    Targeting Nanodiamonds to the Nucleus in Yeast Cells

    Get PDF
    Nanodiamonds are widely used for drug delivery, labelling or nanoscale sensing. For all these applications it is highly beneficial to have control over the intracellular location of the particles. For the first time, we have achieved targeting the nucleus of yeast cells. In terms of particle uptake, these cells are challenging due to their rigid cell wall. Thus, we used a spheroplasting protocol to remove the cell wall prior to uptake. To achieve nuclear targeting we used nanodiamonds, which were attached to antibodies. When using non-targeted particles, only 20% end up at the nucleus. In comparison, by using diamonds linked to antibodies, 70% of the diamond particles reach the nucleus

    Association between proton-pump inhibitors (PPI) and metronomic capecitabine (MCAP) as salvage treatment for patients with advanced gastro-intestinal tumoursa. A randomized phase II study

    Get PDF
    Background: Several researches have shown that acidification of tumor microenvironment is the basis for tumor invasiveness, ability to metastasize S382 Abstracts and cytotoxic agents resistance; therefore proton pump inhibitors (PPI) could significantly increase the chemosensitivity. In our retrospective work we have investigated the role of capecitabine (mCAP) at metronomic dosage of 1500 mg/die as salvage chemotherapy in patients with metastatic colorectal cancer, showing a moderately activity and well tolerability. In this prospective study we evaluated safety and activity of mCAP in the advanced gastro-intestinal patients and the putative chemosensitizing activity of a specific PPI (Rabeprazole) in association to this therap

    New trenching results along the İznik segment of the central strand of the North Anatolian Fault (Turkey): an integration with preexisting data

    Get PDF
    AbstractThis paper provides a new contribution to the construction of the complex and fragmentary mosaic of the Late Holocene earthquakes history of the İznik segment of the central strand of the North Anatolian Fault (CNAF) in Turkey. The CNAF clearly displays lower dextral slip rates with respect to the northern strand however, surface rupturing and large damaging earthquakes (M > 7) occurred in the past, leaving clear signatures in the built and natural environments. The association of these historical events to specific earthquake sources (e.g., Gemlik, İznik, or Geyve fault segments) is still a matter of debate. We excavated two trenches across the İznik fault trace near Mustafali, a village about 10 km WSW of İznik where the morphological fault scarp was visible although modified by agricultural activities. Radiocarbon and TL dating on samples collected from the trenches show that the displaced deposits are very recent and span the past 2 millennia at most. Evidence for four surface faulting events was found in the Mustafali trenches. The integration of these results with historical data and previous paleoseismological data yields an updated Late Holocene history of surface-rupturing earthquakes along the İznik Fault in 1855, 740 (715), 362, and 121 CE. Evidence for the large M7 + historical earthquake dated 1419 CE generally attributed to this fault, was not found at any trench site along the İznik fault nor in the subaqueous record. This unfit between paleoseismological, stratigraphic, and historical data highlights one more time the urge for extensive paleoseismological trenching and offshore campaigns because of the high potential to solve the uncertainties on the seismogenic history (age, earthquake location, extent of the rupture and size) of this portion of NAFZ and especially on the attribution of historical earthquakes to the causative fault

    The Response of HeLa Cells to Fluorescent NanoDiamond Uptake

    Get PDF
    Fluorescent nanodiamonds are promising probes for nanoscale magnetic resonance measurements. Their physical properties predict them to have particularly useful applications in intracellular analysis. Before using them in intracellular experiments however, it should be clear whether diamond particles influence cell biology. While cytotoxicity has already been ruled out in previous studies, we consider the non-fatal influence of fluorescent nanodiamonds on the formation of reactive oxygen species (an important stress indicator and potential target for intracellular sensing) for the first time. We investigated the influence of different sizes, shapes and concentrations of nanodiamonds on the genetic and protein level involved in oxidative stress-related pathways of the HeLa cell, an important model cell line in research. The changes in viability of the cells and the difference in intracellular levels of free radicals, after diamond uptake, are surprisingly small. At lower diamond concentrations, the cellular metabolism cannot be distinguished from that of untreated cells. This research supports the claims of non-toxicity and includes less obvious non-fatal responses. Finally, we give a handhold concerning the diamond concentration and size to use for non-toxic, intracellular measurements in favour of (cancer) research in HeLa cells
    corecore