14 research outputs found

    Photometric Properties of the M33 Star Cluster System

    Full text link
    We present a catalog of 2,990 extended sources in a 1deg x1deg area centered on M33 using the MegaCam camera on the 3.6m Canada-France-Hawaii telescope (CFHT). The catalog includes 599 new candidate stellar clusters, 204 previously confirmed clusters, 1,969 likely background galaxies and 218 unknown extended objects. We present ugriz integrated magnitudes of the candidates and confirmed star clusters as well as full width at half maximum, ellipticity and stellarity. Based on the properties of the confirmed star clusters, we select a sub-sample of highly probable clusters composed of 246 objects. The integrated photometry of the complete cluster catalog reveals a wide range of colors from -0.4 < (g-r) < 1.5 and -1.0 < (r-i) < 1.0 with no obvious cluster subpopulations. Comparisons with models of simple stellar populations suggest a large range of ages some as old as ~ 10 Gyrs. In addition, we find a sequence in the color-color diagrams that deviates from the expected direction of evolution. This feature could be associated with very young clusters (< 10^7 yrs) possessing significant nebular emission. Analysis of the radial density distribution suggests that the cluster system of M33 has suffered from significant depletion possibly due to interactions with M31. We also detect a gap in the cluster distribution in the color-color diagram at (g-r) ~ 0.3 and (u-g) ~ 0.8. This gap could be interpreted as an evolutionary effect. This complete catalog provides promising targets for deep photometry and high resolution spectroscopy to study the structure and star formation history of M33.Comment: 31 pages, 11 figures, accepted for publication in The Astrophysical Journa

    Newly Identified Star Clusters in M33. II. Radial HST/ACS Fields

    Full text link
    We present integrated photometry and color-magnitude diagrams for 161 star clusters in M33, of which 115 were previously uncataloged, using the Advanced Camera For Surveys Wide Field Channel onboard the Hubble Space Telescope. The integrated V-band magnitudes of these clusters range from Mv~-9 to as faint as Mv~-4, extending the depth of the existing M33 cluster catalogs by ~1 mag. Comparisons of theoretical isochrones to the color-magnitude diagrams using the Padova models yield ages for 148 of these star clusters. The ages range from Log (t)~7.0 to Log (t)~9.0. Our color-magnitude diagrams are not sensitive to clusters older than ~1 Gyr. We find that the variation of the clusters' integrated colors and absolute magnitudes with age is consistent with the predictions of simple stellar population models. These same models suggest that the masses of the clusters in our sample range from 5x10^3 to 5x10^4 *Msun.Comment: 28 pages, 12 figures, accepted for publication in The Astrophysical Journa

    J-PLUS: A wide-field multi-band study of the M15 globular cluster. Evidence of multiple stellar populations in the RGB

    Full text link
    The Javalambre Photometric Local Universe Survey (J-PLUS) provides wide field-of-view images in 12 narrow, intermediate and broad-band filters optimized for stellar photometry. Here we have applied J-PLUS data for the first time for the study of Galactic GCs using science verification data obtained for the very metal-poor GC M\,15. Our J-PLUS data provide low-resolution spectral energy distributions covering the near-UV to the near-IR, allowing us to search for MPs based on pseudo-spectral fitting diagnostics. J-PLUS CMDs are found to be particularly useful to search for splits in the sequences formed by the upper red giant branch (RGB) and asymptotic giant branch (AGB) stars. We interpret these split sequences as evidence for the presence of MPs. This demonstrates that the J-PLUS survey will have sufficient spatial coverage and spectral resolution to perform a large statistical study of GCs through multi-band photometry in the coming years.Comment: 11 pages, 11 figures. Accepted for publication @ A&

    PHAT Stellar Cluster Survey I. Year 1 Catalog and Integrated Photometry

    Get PDF
    The Panchromatic Hubble Andromeda Treasury (PHAT) survey is an on-going Hubble Space Telescope (HST) multi-cycle program to obtain high spatial resolution imaging of one-third of the M31 disk at ultraviolet through near-infrared wavelengths. In this paper, we present the first installment of the PHAT stellar cluster catalog. When completed, the PHAT cluster catalog will be among the largest and most comprehensive surveys of resolved star clusters in any galaxy. The exquisite spatial resolution achieved with HST has allowed us to identify hundreds of new clusters that were previously inaccessible with existing ground-based surveys. We identify 601 clusters in the Year 1 sample, representing more than a factor of four increase over previous catalogs within the current survey area (390 arcmin^2). This work presents results derived from the first \sim25% of the survey data; we estimate that the final sample will include \sim2500 clusters. For the Year 1 objects, we present a catalog with positions, radii, and six-band integrated photometry. Along with a general characterization of the cluster luminosities and colors, we discuss the cluster luminosity function, the cluster size distributions, and highlight a number of individually interesting clusters found in the Year 1 search.Comment: 26 pages, 22 figures, Accepted by Ap

    J-PLUS: Detecting and studying extragalactic globular clusters. The case of NGC 1023.

    Get PDF
    Open Access article, published by EDP Sciences, under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Context. Extragalactic globular clusters (GCs) are key objects in studies of galactic histories. The advent of wide-field surveys, such as the Javalambre Photometric Local Universe Survey (J-PLUS), offers new possibilities for the study of these systems. Aims. We performed the first study of GCs in J-PLUS to recover information on the history of NGC 1023, taking advantage of wide-field images and 12 filters. Methods. We developed the semiautomatic pipeline GCFinder for detecting GC candidates in J-PLUS images, which can also be adapted to similar surveys. We studied the stellar population properties of a sub-sample of GC candidates using spectral energy distribution (SED) fitting. Results. We found 523 GC candidates in NGC 1023, about 300 of which are new. We identified subpopulations of GC candidates, where age and metallicity distributions have multiple peaks. By comparing our results with the simulations, we report a possible broad age-metallicity relation, supporting the notion that NGC 1023 has experienced accretion events in the past. With a dominating age peak at 1010 yr, we report a correlation between masses and ages that suggests that massive GC candidates are more likely to survive the turbulent history of the host galaxy. Modeling the light of NGC 1023, we find two spiral-like arms and detect a displacement of the galaxy’s photometric center with respect to the outer isophotes and center of GC distribution (~700pc and ~1600pc, respectively), which could be the result of ongoing interactions between NGC 1023 and NGC 1023A. Conclusions. By studying the GC system of NGC 1023 with J-PLUS, we showcase the power of multi-band surveys for these kinds of studies and we find evidence to support the complex accretion history of the host galaxy. © D. de Brito Silva et al. 2022.D.B.S. also acknowledges Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) process number 2017J00204-6 for the financial support provided for the development of this project. P.C. acknowledges support from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) under grant 310041/2018-0 and from Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) process number 2018J05392-8. A.C.S. acknowledges funding from CNPq and the Rio Grande do Sul Research Foundation (FAPERGS) through grants CNPq-403580/2016-1, CNPq-11153/2018-6, PqG/FAPERGS-17/2551-0001, FAPERGS/CAPES 19/2551-0000696-9 and L’Oréal UNESCO ABC Para Mulheres na Ciência and the Chinese Academy of Sciences (CAS) President’s International Fellowship Initiative (PIFI) through grant E085201009. G.B. acknowledges financial support from the National Autonomous University of México (UNAM) through grant DGAPA/PAPIIT IG100319 and from CONACyT through grant CB2015-252364. J.V. acknowledges the technical members of the UPAD for their invaluable work: Juan Castillo, Tamara Civera, Javier Hernández, Ángel López, Alberto Moreno, and David Muniesa. J.A.H.J. acknowledges Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), process number 2021J08920-8. A.E. acknowledges the financial support from the Spanish Ministry of Science and Innovation and the European Union – NextGenerationEU through the Recovery and Resilience Facility project ICTS-MRR-2021-03-CEFCA and from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) under grant 313285/2020-9 D.A.F. thanks the ARC for financial assistance via DP170102344. Y.J.-T has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 898633. Y.J-T. also acknowledges financial support from the State Agency for Research of the Spanish MCIU through the “Center of Excellence Severo Ochoa” award to the Instituto de Astrofísica de Andalucía (SEV-2017-0709). Based on observations made with the JAST80 telescope telescope/s at the Observatorio Astrofísico de Javalambre, in Teruel, owned, managed, and operated by the Centro de Estudios de Física del Cosmos de Aragón. We thank the Centro de Estudios de Física del Cosmos de Aragón for the allocation of the Director’s Discretionary Time to this program. We thank the OAJ Data Processing and Archiving Unit (UPAD) for reducing and calibrating the OAJ data used in this work. Funding for the J-PLUS Project has been provided by the Governments of Spain and Aragón through the Fondo de Inversiones de Teruel; the Aragón Government through the Research Groups E96, E103, and E16_17R; the Spanish Ministry of Science, Innovation, and Universities (MCIU/AEI/FEDER, UE) with grants PGC2018-097585-B-C21 and PGC2018-097585-B-C22; the Spanish Ministry of Economy and Competitiveness (MINECO) under AYA2015-66211-C2-1-P, AYA2015-66211-C2-2, AYA2012-30789, and ICTS-2009-14; and European FEDER funding (FCDD10-4E-867, FCDD13-4E-2685). The Brazilian agencies FINEP, FAPESP, and the National Observatory of Brazil have also contributed to this project. This work has made use of the computing facilities of the Laboratory of Astroinformatics (IAG/USP, NAT/Unicsul), whose purchase was made possible by the Brazilian agency FAPESP (grant 2009/54006-4) and the INCT-A.Peer reviewe

    Evolving trends in the management of acute appendicitis during COVID-19 waves. The ACIE appy II study

    Get PDF
    Background: In 2020, ACIE Appy study showed that COVID-19 pandemic heavily affected the management of patients with acute appendicitis (AA) worldwide, with an increased rate of non-operative management (NOM) strategies and a trend toward open surgery due to concern of virus transmission by laparoscopy and controversial recommendations on this issue. The aim of this study was to survey again the same group of surgeons to assess if any difference in management attitudes of AA had occurred in the later stages of the outbreak. Methods: From August 15 to September 30, 2021, an online questionnaire was sent to all 709 participants of the ACIE Appy study. The questionnaire included questions on personal protective equipment (PPE), local policies and screening for SARS-CoV-2 infection, NOM, surgical approach and disease presentations in 2021. The results were compared with the results from the previous study. Results: A total of 476 answers were collected (response rate 67.1%). Screening policies were significatively improved with most patients screened regardless of symptoms (89.5% vs. 37.4%) with PCR and antigenic test as the preferred test (74.1% vs. 26.3%). More patients tested positive before surgery and commercial systems were the preferred ones to filter smoke plumes during laparoscopy. Laparoscopic appendicectomy was the first option in the treatment of AA, with a declined use of NOM. Conclusion: Management of AA has improved in the last waves of pandemic. Increased evidence regarding SARS-COV-2 infection along with a timely healthcare systems response has been translated into tailored attitudes and a better care for patients with AA worldwide

    J-PLUS: 2-D analysis of stellar populations with the early-data release

    No full text
    <p>Internal inhomogeneities of a galaxy, such a radial age and metallicity gradients, are the results of its star formation and<br> enrichment history, Therefore, spatially resolved studies of galaxies are essential to uncover the formation and assembly of local<br> galaxies. We present a technique that permits the analysis of stellar population gradients in a relatively low cost way compared to IFU surveys analyzing a vastly larger samples as well as out to larger radii. We developed a technique to analyze unresolved stellar populations of spatially resolved galaxies based on photometric multi-filter surveys. We derived spatially resolved stellar population properties and radial gradients by applying a Centroidal Voronoi Tesselation and performing a multi-color photometry SED fitting.</p

    J-PLUS : two-dimensional analysis of the stellar population in NGC 5473 and NGC 5485

    No full text
    Context. The spatial variations of stellar population properties within a galaxy are intimately related to their formation process. Therefore, spatially resolved studies of galaxies are essential to uncover their formation and assembly. Although the arrival of integral field unit (IFU) surveys has brought a significant breakthrough in the field, recent techniques that combine photometric multifilter surveys with spectral fitting diagnostics have opened a new, relatively low-cost way to disentangle the stellar population of spatially resolved galaxies compared to IFU surveys. Aims. The Javalambre Photometric Local Universe Survey (J-PLUS) is a dedicated multifilter designed to observed ∼8500 deg2 of the northern sky using 12 narrowband, intermediate-band, and broadband filters in the optical range. In this study, we test the potential of the multifilter observation carried out with J-PLUS to investigate the properties of spatially resolved nearby galaxies. Methods. We present detailed 2D maps of stellar population properties, i.e., age, metallicity, extinction, and stellar mass surface density, for two early-type galaxies observed in the J-PLUS and CALIFA surveys. These galaxies are NGC 5473 and NGC 5485. Radial structures are also compared and luminosity- and mass-weighted profiles are derived. We use MUFFIT to process the J-PLUS photometric multifilter observations, and STARLIGHT and STECKMAP to analyze IFU CALIFA data. Results. We demonstrate the scientific potential of J-PLUS/MUFFIT to explore the spatially resolved stellar populations of local galaxies. We find significant discrepancies between the results from the various analysis methods. While radial stellar population gradients obtained with J-PLUS/MUFFIT and the IFU technique CALIFA/STECKMAP are more in agreement, radial stellar population gradients largely differ when CALIFA/STARLIGHT methodology is used. A comparison of the absolute values reveals the existence of intrinsic systematic differences. Age and metallicity radial profiles derived from J-PLUS/MUFFIT are very similar when luminosity- or mass-weighted properties are used, suggesting that the contribution of a younger component is small and the star formation history of these early-type galaxies are well represented by mainly an old single stellar population component. Conclusions. We present the potential of J-PLUS to explore the unresolved stellar populations of spatially extended local galaxies. A comparison between the three methodologies reveals some discrepancies suggesting that the specific characteristics of each method causes important differences. We conclude that the ages, metallicities, and extinction derived for individual galaxies not only depend on the chosen models but also depend on the method used. Future work is required to evaluate in detail the origin of these differences and to quantify the impact that different fitting routines have on the derived stellar population properties

    J-PLUS : two-dimensional analysis of the stellar population in NGC 5473 and NGC 5485

    Get PDF
    Context. The spatial variations of stellar population properties within a galaxy are intimately related to their formation process. Therefore, spatially resolved studies of galaxies are essential to uncover their formation and assembly. Although the arrival of integral field unit (IFU) surveys has brought a significant breakthrough in the field, recent techniques that combine photometric multifilter surveys with spectral fitting diagnostics have opened a new, relatively low-cost way to disentangle the stellar population of spatially resolved galaxies compared to IFU surveys. Aims. The Javalambre Photometric Local Universe Survey (J-PLUS) is a dedicated multifilter designed to observed ∼8500 deg2 of the northern sky using 12 narrowband, intermediate-band, and broadband filters in the optical range. In this study, we test the potential of the multifilter observation carried out with J-PLUS to investigate the properties of spatially resolved nearby galaxies. Methods. We present detailed 2D maps of stellar population properties, i.e., age, metallicity, extinction, and stellar mass surface density, for two early-type galaxies observed in the J-PLUS and CALIFA surveys. These galaxies are NGC 5473 and NGC 5485. Radial structures are also compared and luminosity- and mass-weighted profiles are derived. We use MUFFIT to process the J-PLUS photometric multifilter observations, and STARLIGHT and STECKMAP to analyze IFU CALIFA data. Results. We demonstrate the scientific potential of J-PLUS/MUFFIT to explore the spatially resolved stellar populations of local galaxies. We find significant discrepancies between the results from the various analysis methods. While radial stellar population gradients obtained with J-PLUS/MUFFIT and the IFU technique CALIFA/STECKMAP are more in agreement, radial stellar population gradients largely differ when CALIFA/STARLIGHT methodology is used. A comparison of the absolute values reveals the existence of intrinsic systematic differences. Age and metallicity radial profiles derived from J-PLUS/MUFFIT are very similar when luminosity- or mass-weighted properties are used, suggesting that the contribution of a younger component is small and the star formation history of these early-type galaxies are well represented by mainly an old single stellar population component. Conclusions. We present the potential of J-PLUS to explore the unresolved stellar populations of spatially extended local galaxies. A comparison between the three methodologies reveals some discrepancies suggesting that the specific characteristics of each method causes important differences. We conclude that the ages, metallicities, and extinction derived for individual galaxies not only depend on the chosen models but also depend on the method used. Future work is required to evaluate in detail the origin of these differences and to quantify the impact that different fitting routines have on the derived stellar population properties
    corecore