456 research outputs found
Neural Networks as Paths through the Space of Representations
Deep neural networks implement a sequence of layer-by-layer operations that
are each relatively easy to understand, but the resulting overall computation
is generally difficult to understand. We consider a simple hypothesis for
interpreting the layer-by-layer construction of useful representations: perhaps
the role of each layer is to reformat information to reduce the "distance" to
the desired outputs. With this framework, the layer-wise computation
implemented by a deep neural network can be viewed as a path through a
high-dimensional representation space. We formalize this intuitive idea of a
"path" by leveraging recent advances in *metric* representational similarity.
We extend existing representational distance methods by computing geodesics,
angles, and projections of representations, going beyond mere layer distances.
We then demonstrate these tools by visualizing and comparing the paths taken by
ResNet and VGG architectures on CIFAR-10. We conclude by sketching additional
ways that this kind of representational geometry can be used to understand and
interpret network training, and to describe novel kinds of similarities between
different models.Comment: 10 pages, submitted to ICLR 202
Single Top Quark Production as a Probe for Anomalous Moments at Hadron Colliders
Single production of top quarks at hadron colliders via fusion is
examined as a probe of possible anomalous chromomagnetic and/or chromoelectric
moment type couplings between the top and gluons. We find that this channel is
far less sensitive to the existence of anomalous couplings of this kind than is
the usual production of top pairs by or fusion. This result is
found to hold at both the Tevatron as well as the LHC although somewhat greater
sensitivity for anomalous couplings in this channel is found at the higher
energy machine.Comment: New discussion and 10 new figures added. uuencoded postscript fil
How to be causal: time, spacetime, and spectra
I explain a simple definition of causality in widespread use, and indicate
how it links to the Kramers Kronig relations. The specification of causality in
terms of temporal differential eqations then shows us the way to write down
dynamical models so that their causal nature /in the sense used here/ should be
obvious to all. To extend existing treatments of causality that work only in
the frequency domain, I derive a reformulation of the long-standing Kramers
Kronig relations applicable not only to just temporal causality, but also to
spacetime "light-cone" causality based on signals carried by waves. I also
apply this causal reasoning to Maxwell's equations, which is an instructive
example since their casual properties are sometimes debated.Comment: v4 - add Appdx A, "discrete" picture (not in EJP); v5 - add Appdx B,
cause classification/frames (not in EJP); v7 - unusual model case; v8 add
reference
Online Ramsey theory for a triangle on -free graphs
Given a class of graphs and a fixed graph , the online
Ramsey game for on is a game between two players Builder and
Painter as follows: an unbounded set of vertices is given as an initial state,
and on each turn Builder introduces a new edge with the constraint that the
resulting graph must be in , and Painter colors the new edge either
red or blue. Builder wins the game if Painter is forced to make a monochromatic
copy of at some point in the game. Otherwise, Painter can avoid creating a
monochromatic copy of forever, and we say Painter wins the game.
We initiate the study of characterizing the graphs such that for a given
graph , Painter wins the online Ramsey game for on -free graphs. We
characterize all graphs such that Painter wins the online Ramsey game for
on the class of -free graphs, except when is one particular graph.
We also show that Painter wins the online Ramsey game for on the class of
-minor-free graphs, extending a result by Grytczuk, Ha{\l}uszczak, and
Kierstead.Comment: 20 pages, 10 page
Digitalization and the Anthropocene
Great claims have been made about the benefits of dematerialization in a digital service economy. However, digitalization has historically increased environmental impacts at local and planetary scales, affecting labor markets, resource use, governance, and power relationships. Here we study the past, present, and future of digitalization through the lens of three interdependent elements of the Anthropocene: (a) planetary boundaries and stability, (b) equity within and between countries, and (c) human agency and governance, mediated via (i) increasing resource efficiency, (ii) accelerating consumption and scale effects, (iii) expanding political and economic control, and (iv) deteriorating social cohesion. While direct environmental impacts matter, the indirect and systemic effects of digitalization are more profoundly reshaping the relationship between humans, technosphere and planet. We develop three scenarios: planetary instability, green but inhumane, and deliberate for the good. We conclude with identifying leverage points that shift humanâdigitalâEarth interactions toward sustainability
Design, Construction, Operation and Performance of a Hadron Blind Detector for the PHENIX Experiment
A Hadron Blind Detector (HBD) has been developed, constructed and
successfully operated within the PHENIX detector at RHIC. The HBD is a
Cherenkov detector operated with pure CF4. It has a 50 cm long radiator
directly coupled in a window- less configuration to a readout element
consisting of a triple GEM stack, with a CsI photocathode evaporated on the top
surface of the top GEM and pad readout at the bottom of the stack. This paper
gives a comprehensive account of the construction, operation and in-beam
performance of the detector.Comment: 51 pages, 39 Figures, submitted to Nuclear Instruments and Method
Neutral Particles in Light of the Majorana-Ahluwalia Ideas
The first part of this article (Sections I and II) presents oneself an
overview of theory and phenomenology of truly neutral particles based on the
papers of Majorana, Racah, Furry, McLennan and Case. The recent development of
the construct, undertaken by Ahluwalia [{\it Mod. Phys. Lett. A}{\bf 9} (1994)
439; {\it Acta Phys. Polon. B}{\bf 25} (1994) 1267; Preprints LANL
LA-UR-94-1252, LA-UR-94-3118], could be relevant for explanation of the present
experimental situation in neutrino physics and astrophysics.
In Section III the new fundamental wave equations for self/anti-self
conjugate type-II spinors, proposed by Ahluwalia, are re-casted to covariant
form. The connection with the Foldy-Nigam-Bargmann-Wightman- Wigner (FNBWW)
type quantum field theory is found. The possible applications to the problem of
neutrino oscillations are discussed.Comment: REVTEX file. 21pp. No figure
Nuclear dependence of the transverse single-spin asymmetry in the production of charged hadrons at forward rapidity in polarized , Al, and Au collisions at GeV
We report on the nuclear dependence of transverse single-spin asymmetries
(TSSAs) in the production of positively-charged hadrons in polarized
, Al and Au collisions at
GeV. The measurements have been performed at forward
rapidity () over the range of GeV and
. We observed a positive asymmetry for
positively-charged hadrons in \polpp collisions, and a significantly reduced
asymmetry in + collisions. These results reveal a nuclear
dependence of charged hadron in a regime where perturbative techniques
are relevant. These results provide new opportunities to use \polpA collisions
as a tool to investigate the rich phenomena behind TSSAs in hadronic collisions
and to use TSSA as a new handle in studying small-system collisions.Comment: 303 authors from 66 institutions, 9 pages, 2 figures, 1 table. v1 is
version accepted for publication in Physical Review Letters. Plain text data
tables for the points plotted in figures for this and previous PHENIX
publications are (or will be) publicly available at
http://www.phenix.bnl.gov/papers.htm
Measurements of double-helicity asymmetries in inclusive production in longitudinally polarized collisions at GeV
We report the double helicity asymmetry, , in inclusive
production at forward rapidity as a function of transverse momentum
and rapidity . The data analyzed were taken during
GeV longitudinally polarized collisions at the Relativistic Heavy Ion
Collider (RHIC) in the 2013 run using the PHENIX detector. At this collision
energy, particles are predominantly produced through gluon-gluon
scatterings, thus is sensitive to the gluon polarization
inside the proton. We measured by detecting the decay
daughter muon pairs within the PHENIX muon spectrometers in the
rapidity range . In this kinematic range, we measured the
to be ~(stat)~~(syst). The
can be expressed to be proportional to the product of the
gluon polarization distributions at two distinct ranges of Bjorken : one at
moderate range where recent RHIC data of jet and
double helicity spin asymmetries have shown evidence for significant gluon
polarization, and the other one covering the poorly known small- region . Thus our new results could be used to further
constrain the gluon polarization for .Comment: 335 authors, 10 pages, 4 figures, 3 tables, 2013 data. Version
accepted for publication by Phys. Rev. D. Plain text data tables for the
points plotted in figures for this and previous PHENIX publications are (or
will be) publicly available at http://www.phenix.bnl.gov/papers.htm
- âŠ