16 research outputs found

    Structure, Organization, and Expression of the lct Gene for Lacticin 481, a Novel Lantibiotic Produced by Lactococcus lactis

    Get PDF
    The structural gene for the lactococcal lantibiotic lacticin 481 (lct) has been identified and cloned using a degenerated 20-mer DNA oligonucleotide based on the amino-terminal 7 amino acid residues of the purified protein. The transcription of the lct gene was analyzed, and its promoter was mapped. DNA sequence analysis of the lct gene revealed an open reading frame encoding a peptide of 51 amino acids. Comparison of its deduced amino acid sequence with the amino-terminal sequence and the amino acid composition of lacticin 481 indicates that the 61-residue peptide is prelacticin 481, containing a 27-residue carboxyl-terminal propeptide and a 24-residue amino-terminal leader peptide which lacks the properties of a typical signal sequence and which is significantly different from the leaders of other lantibiotics. The predicted amino acid sequence of prolacticin 481 contains 3 cysteines, 2 serines, and 2 threonines which were not detectable in amino acid analyses of mature lacticin 481. Based on these results and on characterization by two-dimensional NMR techniques, a structural model is proposed in which 2 cysteine residues are involved in lanthionine and one in β-methyllanthionine formation, and a 4th threonine residue is dehydrated. This model predicts a molecular mass for lacticin 481 of 2,901, which is in excellent agreement with that obtained from mass spectrometry.

    Engineering Dehydrated Amino Acid Residues in the Antimicrobial Peptide Nisin

    Get PDF
    The small antimicrobial peptide nisin, produced by Lactococcus lactis, contains the uncommon amino acid residues dehydroalanine and dehydrobutyrine and five thio ether bridges. Since these structures are posttranslationally formed from Ser, Thr, and Cys residues, it is feasible to study their role in nisin function and biosynthesis by protein engineering. Here we report the development of an expression system for mutated nisin Z (nisZ) genes, using nisin A producing L. lactis as a host. Replacement by site-directed mutagenesis of the Ser-5 codon in nisZ by a Thr codon, led to a mutant with a dehydrobutyrine instead of a dehydroalanine residue at position 5, as shown by NMR. Its antimicrobial activity was 2-10-fold lower relative to wild-type nisin Z, depending on the indicator strain used. In another mutagenesis study a double mutation was introduced in the nisZ gene by replacing the codons for Met-17 and Gly-18 by codons for Gln and Thr, respectively, as in the third lanthionine ring of the related antimicrobial peptide subtilin from Bacillus subtilis. This resulted in the simultaneous production of two mutant species, one containing a Thr residue and the other containing a dehydrobutyrine residue at position 18, both having different bacteriocidal properties.

    Influence of Amino Acid Substitutions in the Nisin Leader Peptide on Biosynthesis and Secretion of Nisin by Lactococcus lactis

    Get PDF
    Structural genes for small lanthionine-containing antimicrobial peptides, known as lantibiotics, encode N-terminal leader sequences which are not present in the mature peptide, but are cleaved off at some stage in the maturation process. Leader sequences of the different lantibiotics share a number of identical amino acid residues, but they are clearly different from sec-dependent protein export signal sequences. We studied the role of the leader sequence of the lantibiotic nisin, which is produced and secreted by Lactococcus lactis, by creating site-directed mutations at various positions in the leader peptide sequence. Mutations at Arg-1 and Ala-4, but not at the conserved Pro-2, strongly affected the processing of the leader sequence and resulted in the extracellular accumulation of a biologically inactive precursor peptide. Amino acid analysis and 1H NMR studies indicated that the precursor peptide with an Ala-4 → Asp mutation contained a modified nisin structural part with the (mutated) unmodified leader sequence still attached to it. The Ala-4 → Asp precursor peptide could be activated in vitro by enzymatic cleavage with trypsin, liberating nisin. These results confirmed that cleavage of the leader peptide is the last step in nisin maturation and is necessary to generate a biologically active peptide. Several mutations, i.e. Pro-2 → Gly, Pro-2 → Val, Asp-7 → Ala, Lys-9 → Leu, Ser-10 → Ala/Ser-12 → Ala and Val-11 → Asp/Val-13 → Glu in the leader peptide did not have any detectable effect on nisin production and secretion, although some of them affected highly conserved residues. When mutations were created in the -18 to -15 region of the nisin leader peptide (i.e. Phe-18 → Leu, Leu-16 → Lys, Asp-15 → Ala), no secretion or intracellular accumulation could be detected of nisin or its precursors. This suggested that these conserved residues are involved in the maturation process and may interact with lantibiotic-specific modifying enzymes.

    Engineering a disulfide bond and free thiols in the lantibiotic nisin Z

    No full text
    The antimicrobial peptide nisin contains the uncommon amino acid residues lanthionine and methyl-lanthionine, which are post-translationally formed from Ser, Thr and Cys residues. To investigate the importance of these uncommon residues for nisin activity, a mutant was designed in which Thr13 was replaced by a Cys residue, which prevents the formation of the thioether bond of ring C. Instead, Cys13 couples with Cys19 via an intramolecular disulfide bridge, a bond that is very unusual in lantibiotics. NMR analysis of this mutant showed a structure very similar to that of wild-type nisin, except for the configuration of ring C. The modification was accompanied by a dramatic reduction in antimicrobial activity to less than 1% of wild-type activity, indicating that the lanthionine of ring C is very important for this activity. The nisin Z mutants S5C and M17C were also isolated and characterized; they are the first lantibiotics known that contain an additional Cys residue that is not involved in bridge formation but is present as a free thiol. Secretion of these peptides by the lactococcal producer cells, as well as their antimicrobial activity, was found to be strongly dependent on a reducing environment. Their ability to permeabilize lipid vesicles was not thiol-dependent. Labeling of M17C nisin Z with iodoacetamide abolished the thiol-dependence of the peptide. These results show that the presence of a reactive Cys residue in nisin has a strong effect on the antimicrobial properties of the peptide, which is probably the result of interaction of these residues with thiol groups on the outside of bacterial cells.

    Homology modelling of the Lactococcus lactis leader peptidase NisP and its interaction with the precursor of the lantibiotic nisin

    Get PDF
    A model is presented for the 3-D structure of the catalytic domain of the putative leader peptidase NisP of Lactococcus lactis, and the interaction with its specific substrate, the precursor of the lantibiotic nisin. This homology model is based on the crystal structures of subtilisin BPN' and thermitase in complex with the inhibitor eglin. Predictions are made of the general protein fold, inserted loops, Ca2+ binding sites, aromatic interactions and electrostatic interactions of NisP. Cleavage of the leader peptide from precursor nisin by NisP is the last step in maturation of nisin. A detailed prediction of the substrate binding site attempts to explain the basis of specificity of NisP for precursor nisin. Specific acidic residues in the S1 sub site of the substrate binding region of NisP appear to be of particular importance for electrostatic interaction with the P1 Arg residue of precursor nisin after which cleavage occurs. The hydrophobic S4 subsite of NisP may also contribute to substrate binding as it does in subtilisins. Predictions of enzyme-substrate interaction were tested by protein engineering of precursor nisin and determining susceptibility of mutant precursors to cleavage by NisP. An unusual property of NisP predicted from this catalytic domain model is a surface patch near the substrate binding region which is extremely rich in aromatic residues. It may be involved in binding to the cell membrane or to hydrophobic membrane proteins, or it may serve as the recognition and binding region for the modified, hydrophobic C-terminal segment of precursor nisin. Similar predictions for the tertiary structure and substrate binding are made for the highly homologous protein EpiP, the putative leader peptidase for the lantibiotic epidermin from Staphylococcus epidermidis, but EpiP lacks the aromatic patch. Based on these models, protein engineering can be employed not only to test the predicted enzyme-substrate interactions, but also to design lantibiotic leader peptidases with a desired specificity.

    Structure and biological activity of chemically modified nisin A species

    Get PDF
    Nisin, a 34-residue peptide bacteriocin, contains the less common amino acids lanthionine, β-methyllanthionine, dehydroalanine (Dha), and dehydrobutyrine (Dhb). Several chemically modified nisin A species were purified by reverse-phase HPLC and characterized by two-dimensional NMR and electrospray mass spectrometry. Five constituents, [2-hydroxy-Ala5]nisin, [Ile4-amide,pyruvyl-Leu6]des-Dha5-nisin, [Met(O)21]nisin, [Ser33]nisin, and nisin-(1-32)-peptide amide, were found in a commercial nisin sample. A further species, [2-hydroxy-Ala5]nisin-(1-32)-peptide amide, was obtained by freeze drying an acidic nisin solution. These compounds are formed by chemical modification of nisin: the addition of a water molecule to the dehydroalanine residues, which can lead to the cleavage of the polypeptide chain, or the oxidation of methionine residues. The 2-hydroxyalanine-containing products have a limited stability; they are spontaneously converted into the corresponding des-dehydroalanine derivatives. The growth-inhibiting activity of the modified nisins towards different bacteria was determined. The 2-hydroxyalanine-containing species and the des-dehydroalanine derivative show a strong reduction in biological activity as compared to native nisin. [Met(O)21]nisin and [Ser33]nisin show moderate or no reduction in biological activity.
    corecore