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Abstract The lantibiotic lacticin 481 is a bacteriocin produced 
by Lactococcus lactis ssp. lactis. This polypeptide contains 27 
amino acids, including the unusual residues dehydrobutyrine and 
the thioether-bridging lanthionine and 3-methyllanthionine. 
Lacticin 481 belongs to a structurally distinct group of 
lantibiotics, which also include streptococcin A-FF22, salivaricin 
A and variacin. Here we report the first complete structure of 
this type of lantibiotic. The exact location of the thioether 
bridges in lacticin 481 was determined by a combination of 
peptide chemistry, mass spectrometry and NMR spectroscopy, 
showing connections between residues 9 and 14, 11 and 25, and 
18 and 26. 

Key words: Bacteriocin; Lanthionine-containing polypeptide; 
Post-translational modification; Cyanogen bromide cleavage; 
NMR;  Mass spectrometry 

I. Introduction 

Bacteria produce various antagonistic compounds, such as 
acids, peroxides and bacteriocins, against competing micro- 
flora. Of these substances, bacteriocins constitute a large fam- 
ily of polypeptides, which can be subdivided into different 
classes based on their mode of action and on their structure 
[1]. One of these classes is formed by the lantibiotics. Of 
special interest are the lantibiotics produced by lactic acid 
bacteria, because they can directly be used in the food indus- 
try. Examples are nisin and lacticin 481, which are both pro- 
duced by Lactococcus lactis ssp. lactis. Nisin has been known 
since 1928 [2], whereas lacticin 481 has been isolated only 
recently as a result of screening for bacteriocin production 
[3,4]. Lacticin 481 exhibits bactericidal activity against a 
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Abbreviations: Ala§, 3-methylalanyl moiety of (2S,3S,6R)-3-methyl- 
lanthionine; Alas, D-alanyl moiety of meso-lanthionine; s Ala, L-alanyl 
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wide range of Gram-positive bacteria [3,4]. In this respect, 
its potential use as an agent to prevent late blowing of cheese 
due to Clostridium tyrobutyricum has been proposed [4]. The 
structural gene of lacticin 481 has been sequenced together 
with two adjacent genes, believed to be involved in lacticin 
481 biosynthesis [5-7]. Lacticin 481 is membrane-active as 
judged from peptide-induced surface-pressure changes of lipid 
monolayer films [8]. 

Lacticin 481 contains the unusual cc,13-unsaturated amino 
acid dehydrobutyrine and the uncommon thioether-bridging 
residues lanthionine and 3-methyllanthionine. Dehydrobutyr- 
ine is formed by dehydration of a threonine residue. Lanthio- 
nine and 3-methyllanthionine are formed by dehydration of a 
serine and a threonine to form dehydroalanine and dehydro- 
butyrine, respectively, followed by addition of the thiol group 
of a cysteine to the a,~-unsaturated residue [9]. Biosynthesis 
of lantibiotics includes ribosomal synthesis, post-translational 
modification reactions, transport across the cell membrane 
and cleavage of the leader peptide. Because of the post-trans- 
lational modifications, the covalent structure of lacticin 481 
cannot be deduced from the gene sequence in a straightfor- 
ward way. Therefore, to characterize its structure, the location 
and structure of the unusual residues, the amino-acid se- 
quence and the positions of the thioether bridges of the (3- 
methyl)lanthionines need to be determined. A number of dif- 
ferent techniques have been used to elucidate the structure of 
lantibiotics. In 1970 the covalent structure of the lantibiotic 
nisin was determined by chemical and enzymatic methods 
[10]. Recently, NMR has been brought to bear upon the prob- 
lem, to arrive at the structure of the lantibiotic epilancin K7 
[11,12]. The amino-acid-sequence determination of lantibiotics 
by Edman degradation is hampered by the presence of unu- 
sual residues, but this has been overcome recently by chemical 
derivatizations prior to Edman degradation [13]. The combi- 
nation of NMR, MS and this new strategy for direct sequence 
analysis proved successful for the determination of the struc- 
ture of the lantibiotic actagardine [14]. For lacticin 481 the 
amino-acid sequence, including the positions of the post- 
translationally modified residues, has been determined by ami- 
no-acid analysis, NMR and sequencing of the structural gene 
[5]. In the same study it was also demonstrated that the 3- 
methyllanthionine is formed by residues 9 and 14 (3- 
methyllanthionine°,14). The serine-derived moieties of the 
two lanthionines occur in positions 11 and 18 and are cova- 
lently linked to the cysteine-derived moieties in positions 25 
and 26, yielding two possible structures [5] (Fig. 1), both with 
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overlapping ring systems. The bridging pattern o f  the two 
lanthionines could not be determined via the N M R  approach 
which was successful for the 3-methyllanthionine 9,14, because 
of  severe line broadening of  resonances of  the lanthionine- 
forming residues. 

Here we present the completion of  the covalent structure of  
lacticin 481 by the determination of  the location of  the 
thioether bridges formed by the (3-methyl)lanthionines as de- 
termined by a combination of  peptide chemistry, MS and 
N M R .  

2. Materials and methods 

2.1. Cleavage with cyanogen bromide 
Lacticin 481 was obtained according to the previously described 

protocol [15,5]. A solution of 1.9 mg of lacticin 481 in 400 gl of 
70% trifluoroacetic acid (in % by volume) was incubated with 18 
mg of cyanogen bromide (CNBr, Sigma) for 17 h in the dark at 
room temperature. 

2.2. Mass spectrometry 
Positive-ion FAB mass spectra were recorded on a Jeol JMS-SX/ 

SX102A four-sector instrument of BIEx-B2E2 geometry operating at 
an accelerating voltage of 6 kV. Xenon was used as FAB gas; the 
FAB gun was operated at 6 kV and a 10 mA emission current. The 
magnet was scanned from m/z 10 to 4000 in 30 s and resolution was 
1000. Samples were dissolved in methanol/water (1:1, v/v) and loaded 
into a glycerol matrix. MS/MS spectra were acquired by selecting the 
desired precursor ion with MS-I and colliding the ion in the collision 
cell located in the third field free region. The collision gas (nitrogen) 
was introduced in the cell so that the intensity of the main beam from 
MS-1 was reduced to about 50%. The resulting fragment ions were 
monitored by scanning MS-2. 

2.3. NMR spectroscopy 
The influence of acetonitrile-da (Wilmad), of dimethylsulfoxide-d6 

(DMSO, Aldrich), and of dodecylphosphocholine-d3s (DPC, Campro 
Scientific) on the 1D-NMR spectrum of lacticin 481 was examined at 
400 MHz on a Bruker AM400 spectrometer, interfaced to an As- 
pect3000 computer. 1D-NMR spectra were recorded at 5, 25 and 
40°C. 

1D-NMR spectra, TOCSY spectra [16,17] with a mixing time of 50 
ms and NOESY spectra [18,19] with a mixing time of 450 ms were 
recorded for a sample containing 1.9 mg of the CNBr-treated peptide 
of lacticin 481 in 0.5 ml H2Of2H20 (9:1) pH 3.5 and in 0.5 ml ~H20 
pH 3.5 (pH meter reading) at 400 MHz. Additionally, a NOESY 
spectrum with a mixing time of 450 ms was recorded for the same 
polypeptide in 0.5 ml H20/2H~O (9:1) pH 3.5 at 600 MHz on a 
Bruker AMX2 600 spectrometer, interfaced to an ASPECT station. 
2D-NMR experiments were performed at 5°C. The 2D-NMR data 
were processed using the MNMR program (PRONTO Software De- 
velopment and Distribution, Copenhagen, Denmark) running on a 
Silicon Graphics Indigo workstation. Acquisition and processing 
parameters were essentially the same as those described previously 
[20,21]. The spectra were referenced to sodium 3-(trimethylsilyl)-l- 
propanesulfonate (DSS). 

3. Results and discussion 

The (3-methyl)lanthionine bridging pattern can be estab- 
lished by N M R ,  provided that the resonances o f  the (3- 
methyl)lanthionine moieties and NOEs  or heteronuclear mul- 
tiple-bond correlation (HMBC) cross-peaks over the thioether 
bridges can be identified. This method was successful for the 
lantibiotics epilancin K7 [11] and actagardine [14]. For  lacticin 
481 in aqueous solution the N M R  approach yielded only the 
location of  the 3-methyllanthionine involving residues 9 and 
14 [5]. Because of  line broadening of  some of  the resonances 
(e.g. near 9 ppm, see Fig. 2A), caused by chemical exchange, 

the location of  the two lanthionine bridges remained unclear. 
In an at tempt to influence this chemical exchange, and thus 
the N M R  line-width, the polypeptide was placed in different 
environments. It was dissolved in a mixture of  acetonitrile and 
water, and in D M S O  (data not  shown), and the (supposedly) 
membrane-interacting molecule was complexed to membrane-  
mimicking micelles of  DPC. In all these systems the N M R  
line-width remained too large to detect ring-establishing con- 
tacts (Fig. 2). The most likely explanation for the observed 
line broadening is an exchange between at least two different 
conformations adopted by the molecule in the environments 
studied. This line broadening severely hampers the determina- 
tion of  the 3D structure of  lacticin 481 by high-resolution 
N M R  under the conditions studied. 

The key to the determination of  the bridging pattern in 
lacticin 481 was found to be a chemical modification with 
CNBr.  This reagent induces cleavage of  the peptide chain 
on the C-terminal side of  a methionine residue, the methio- 
nine being converted to a homoserine lactone [22]. Lacticin 
481 contains a single methionine residue at position 16. The 
FAB-MS spectra of  untreated lacticin 481 and of  its CNBr  
reaction product  are shown in Fig. 3. The protonated mole- 

Table 1 
Proton resonance assignments of the CNBr-treated lacticin 481 in 
aqueous solution at 5°C and pH 3.5 

Residue NH ctH ~H Others 

Lys-1 - 4.07 1.93, 1.93 

Gly-2 8.91 4.05, 4.05 
Gly-3 8.55 4.04, 4.04 
Ser-4 8.49 4.48 3.88, 3.88 
Gly-5 8.67 3.95, 3.95 
Val-6 8.05 4.02 1.95 
Ile-7 8.36 4.11 1.70 

His-8 8.74 4.97 3.25, 3.14 
Ala~-9 8.37 4.61 3.48 
Ile-10 7.94 4.35 1.86 

Alas-11 8.96 4.45 2.97, 2.97 
His-12 9.15 4.75 3.40, 3.18 
Glu-13 8.81 4.15 2.18, 2.08 
sAla-14 7.88 4.57 3.12, 2.78 
Asn-15 8.27 4.72 2.79, 2.74 
Hsl-16 ~ 8.62 4.64 2.57, 2.32 

Asn-17 - 4.25 2.92, 2.92 
Alas-18 8.76 4.30 2.68, 2.51 
Trp-19 8.34 4.68 3.32, 3.25 

Gln-20 7.65 4.43 1.77, 1.70 

Phe-21 8.73 4.80 2.76, 2.46 

Val-22 8.61 4.06 1.91 
Phe-23 9.38 4.47 3.38, 3.08 

Dhb-24 9.46 6.95 
sAla-25 8.10 4.86 3.11, 2.90 
sAla-26 9.21 3.86 2.92, 2.69 
Ser-27 8.42 4.44 3.73, 3.68 

~CH2 1.48, 1.48, 
8CH2 1.71, 1.71 
eCH2 3.00, 3.00, 
eNH3 + 7.61 

~ H 3  0.87, 0.78 
7CH2 1.41, 1.10, 
3~2H3 0.80, riCH3 
0.80 
2H 8.63, 4H 7.31 
"yCH~ 1.09 
"~CH2 1.38, 1.08, 
7CH3 0.88, 8CH3 
0.79 

2H 8.63, 4H 7.29 
~tCH2 2.36, 2.36 

7NH2 7.67, 6.98 
7CH2 4.52, 4.36 

yNH2 7.70, 6.99 

2H 7.21, 4H 7.63, 
5H 7.15, 
6H 7.22, 7H 7.48, 
N1H 10.20 
~CH2 1.95, 1.95, 
fiNH2 7.37, 6.87 
2H,6H 6.87, 
3H,4H,5H 7.25 
"yCH3 0.79, 0.79 
2H,6H 7.24, 3H,5H 
7.35, 4H 7.28 
7CH3 1.66 

~Homoserine lactone. 
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cule (M+H +) of lacticin 481 at m/z 2902.5 disappeared after 
treatment with CNBr, while an ion corresponding to the 
CNBr-derived product (mlz 2872.3) appeared in the spectrum. 

Besides providing information about the molecular mass, 
FAB-MS spectra of peptides often contain fragment ions 
that can be used for the elucidation of the peptide structure 
[23,24]. The FAB-MS spectra both of lacticin 481 and of 
CNBr-treated lacticin 481 contained some additional fragment 
ions corresponding to N-terminal sequence ions (data not 
shown). However, all ions originated from the linear part of 
the peptide (Lys-1 to His-8), and fragmentation was not ob- 
served in the peptide part containing the thioether bridges. 
This is in accordance with earlier reported FAB-MS results 
for other lantibiotics [25,26]. In the spectrum of the CNBr- 
treated lacticin 481 (Fig. 3B), additional peaks were observed 
in the mass region between 1200 and 1650. These peaks cor- 
respond to the M+H + ions of the N-terminal peptide (resi- 
dues 1 to 16, m/z 1587.9 and 1620.1) and the C-terminal pep- 
tide (residues 17 to 27, m/z 1253.7 and 1285.7), both with 
either a Cys or an Ala residue at the position of the original 
thioether bridge. These peptides are formed in a reduction 
process of the thioether bridge that connects the N-terminal 
and the C-terminal peptide. Since either peptide can incorpo- 
rate the sulfur to form a Cys residue, four different com- 
pounds are formed and, consequently, four M+H + peaks 
are observed (Fig. 3). The reduction process probably oc- 
curred on the FAB probe, since no indication was found in 
the N M R  spectra for the presence of these peptides. 

The ion at mlz 1253.7 (Fig. 3) was subjected to MS/MS 
analysis (data not shown). The mass spectrum showed very 
limited fragmentation. The most abundant fragment ion (next 
to the elimination of NH3 and H20) was the N-terminal B10 
ion (Roepstorff notation, [27]), which results from cleavage of 
the amide bond between the residues sAla-26 and Set-27. The 
subsequent B9 ion (elimination of residue 26) was not ob- 
served, corroborating the presence of a lanthionine bridge 
between the residues Alas-18 and sAla-26 (vide infra). Other 
ions in the spectrum could be assigned to the loss of CO, 
which is often observed for cyclic peptides [28], and the loss 
of a Phe and subsequently a Val residue. 

The CNBr peptide of lacticin 481 was studied by NMR 
without further purification (Figs. 2D and 4). For  this mod- 
ified peptide the line-widths of all its resonances are suffi- 
ciently sharp (Fig. 2D) to allow a detailed high-resolution 
NMR analysis. Patterns of all amino acid residues were iden- 
tified in TOCSY spectra. The presence of the unusual residues 
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Fig. 2. (A-C) Amide, aromatic and vinyl proton region of the IH- 
NMR spectrum of lacticin 481 at room temperature: (A) in aqueous 
solution at pH 3.5, (B) in 18% water10.14% trifluoroacetic acid in 
acetonitrile-d3, (C) complexed to DPC-d3s micelIes (lacticin 
481:DPC= 1:57) at pH 3.5. (D) IH-NMR spectrum of the CNBr- 
treated lacticin 481 in aqueous solution at room temperature and 
pH 3.5. 

was established by observation of their characteristic signals 
in the NMR spectrum (e.g. [29,11]). Also a homoserine lac- 
tone as product of the CNBr treatment was identified. In the 
NOESY spectra most of the amino acid residues showed con- 
nectivities only to a single other residue. Since sequential con- 
tacts between neighbouring amino acid residues involve dis- 
tances which are observable in NOESY spectra, a sequential 
assignment could be carried out, encompassing two peptide 
chains involving the residues 1-to-16 and 17-to-27. No NOEs 
were observed between the residues 16 and 17. The scarcity of 
long-range NOEs suggests that the CNBr peptide of lacticin 
481 does not adopt a single unique conformation, but is al- 

f ~7~s ' - - - I  I s 251 
1 9 I 14 18 126 

s 

f ~ - ~ s - ~ l  I s r28 

S. 

Fig. 1. Schematic representation of the two possible structures for 
lacticin 481 based on previous work [5]. The known amino-acid se- 
quence is boxed; the thioether bridges are represented by their sul- 
fur atoms and the amino acid residues involved by their number in 
the sequence. The 3-methyllanthionine formed by residues 9 and 14 
is, in contrast to the lanthionines, indicated in bold. 

Table 2 
NOEs used for the determination of the location of the thioether 
bridges 

Ala~-9~Ala-14 Alas-1 l~Ala-25 Alas-18-sAla-26 

(~H-J3H" NH-~H 
[xH-I3H (~H-NH 
I~H-etH 0tH-I~'H 
[~H-[~H [3HI~'Hb-NH 
I3H-13'H I3H/13'Hb-txH 
~CH3-otH [~H/13'Hb-[3H 
~H3-13H 
~H3-~'H 

etH-c~H 
ctH-13H 
l~'H-txH 
VH-pH 

~The low-field 13H resonance of Alas and sAla (residues 11, 14, 18, 25 
and 26) is arbitrarily named ~H and the high-field one ~I'H because 
these resonances are not assigned stereospeeifically. 
bThe ~iH resonances of Alas-ll overlap. 
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1 5 1 " - 7 ~ s ~  16 
C K-G-G-S-G-V-I-H-A*-I-A-H-E-A-N-Hsl [M+H] += 1587.8 

1 6 i--'Ts-~115 
K-G-G-S-G-V-I-H-A*-I-C-H-E-A-N-Hsl [M+H] += 1619.7 

17 I 20 S 25 I 
N-A-W-Q-F-V-F-Dhb-C-A-S [M+H] += 1285.5 

17 I 20 S 25 I 
N-A-W-Q-F-V-F-Dhb-A-A-S [M+H] += 1253.5 

B 

[M+2HI 2* 
1436.5 

[M+HI ÷ 
2872.3 

1620.1 
1285.7 1587.9 

' 1 ~ 0 '  ' ' ldOO . . . . . . .  2ooo 2.'00 . . . . . . .  2609 3~06 

[M+H] + 
2902.5 

[M+2H] 2+ 
1451.6 

~ i t t t i t i ! i I i i i i ~ i i i J J i 
1200 1600 2000 2400 2600 3200 m/z 

Fig. 3. Part of FAB-MS spectra of (A) lacticin 481 and (B) its 
CNBr peptide. In the latter spectrum additional peaks were ob- 
served, as indicated. (C) Peptides corresponding to the additional 
peaks in the mass spectrum of the CNBr-treated lacticin 481, to- 
gether with the calculated masses of the protonated molecules (Hsl, 
homoserine lactone; Dhb, dehydrobutyrine). The C-terminal pep- 
tides are given with the correct thioether bridging, as determined in 
this study. 

most unstructured. However, a number of NOEs were ob- 
served for the side chain of Phe-2 I, the aromatic ring of which 
points to the lanthionine of the cyclic structure in which Phe- 
21 is located. Thus, the amino-acid sequence together with the 
CNBr-induced modifications could be confirmed and the res- 
onances could be completely assigned (Table 1). The majority 
of the observed NOEs were intra-residue or sequential. Al- 
most all of the remaining NOEs were observed between the 
(3-methyl)lanthionine-forming residues 9 and 14, 11 and 25, 
and 18 and 26 (Table 2 and Fig. 4). The distances between I~H 
protons in different halves of a (3-methyl)lanthionine (CH-S- 
CH) are always between 2.0 and 4.5 A; thus, these contacts 
should be observable in NOESY spectra. Every residue in- 
volved in (3-methyl)lanthionine bridging shows only NOE 
contacts to a single other (3-methyl)lanthionine-forming resi- 
due. These NOEs necessarily reflect the bridging pattern of 
lacticin 481. The previously established location of the 3- 
methyllanthionine between residues 9 and 14 is now con- 
firmed. In addition, the NOEs between the two residues form- 
ing a (3-methyl)lanthionine in lacticin 481 are comparable to 

those observed between the cross-linked (3-methyl)lanthio- 
nine-forming residues of nisin. These observations lead to 
the complete structure of lacticin 481 as [3-methyllanthioni- 
neg,14,1anthioninen,ZS,lanthioninelS,26]lacticin 481 (Fig. 5). 

Now that the bridging pattern is known, the line broad- 
ening in the NMR spectrum of intact lacticin 481 can be 
reconsidered. By modelling two low-energy structures can be 
built with the rings formed by the residues 9-to-14 and 18-to- 
26 folded with the one above the other and vice versa (H.S. 
Rollema, unpublished results). An exchange between these 
two proposed conformations on the ms time scale would ex- 
plain the observed line broadening in the NMR spectrum. 

Currently about 25 lantibiotics are known, which are sub- 
divided into two types, A and B [30]. The type-A lantibiotics, 
like nisin, subtilin, epidermin, Pep5 and epilancin K7, are 
elongated cationic polypeptides, which exert their bactericidal 
function primarily via membrane perturbation. Type-B lanti- 
biotics, like the duramycins, actagardine and mersacidin, are 
globular, have a low net charge, and are enzyme inhibitors. 
Lacticin 481 has been classified as type A [5]. Both the lanti- 
biotic and the leader sequence of lacticin 481 show significant 
homology to the corresponding sequences of the lantibiotics 
streptococcin A-FF22 (SA-FF22) [31,32], salivaricin A [33] 
and variacin [34] (see Fig. 6), but not to those of the other 

E 

v t'- 
.o 
E 

0 

2.5 (~18-26 18-268 21~ 

11-25 
4.5 

0 ~16 

u_ 5.0 
4.0 3.5 3.0 2.5 

F2 Chemical shift (ppm) 
Fig. 4. Inter-residue NOEs establishing the thioether bridges be- 
tween residues 9 and 14, 11 and 25, and 18 and 26 in a part of  a 
NOESY spectrum of  the CNBr peptide of  lacticin 481 in aqueous 
solution (2H20) at 5°C and pH 3.5. The numbers in the NOESY 
spectrum refer to residue positions in the sequence of the polypep- 
tide. The NOEs over the thioether bridges are indicated in bold ital- 
ics. A cross-peak of  an impurity is indicated by an asterisk. 

o26 

3.0 026 , ~ 2 '  26 

9 - 1 4 ~  14 

40 'g'  
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s I - " ~ - s ~  ~5 I 20 s 2s I 
K-G-G-S-G-V-I-H-A*-I-A-H-E-A-N-M-N-A-W-Q-F-V-F-Dhb-A-A-S 

I s I 

~ C N B r  

hornoserine lactone 

K-G-G-S-G-V-I-H-A*-I-A-H-E-A-N-NH~H.d=o N-A-W-Q-F-V-F-Dhb-A-A-S 
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Fig. 5. Representation of the covalent structure of lacticin 481, its 
CNBr peptide, and structures of the unusual residues. 

type-A lantibiotics [5,30]. Thus, it appears that these four 
polypeptides form a new group of type-A lantibiotics. For  
this group of lantibiotics mode of action studies have only 
been performed for SA-FF22: this polypeptide acts by the 
voltage-dependent formation of pores in bacterial membranes, 
similar to that displayed by several other type-A lantibiotics 
[35]. The overlapping ring systems make lacticin 481 rather 
compact, in contrast to the type-A lantibiotics not belonging 
to the lacticin-481 group, which are elongated and have a 
membrane-spanning length. 

The lantibiotics lacticin 481, SA-FF22, salivaricin A and 
variacin are produced by microorganisms from different gen- 
era, i . e .L ,  lactis, Streptococcus pyogenes, S. salivarius and 
Micrococcus varians, respectively. However, in addition to se- 
quence homology these four lantibiotics also show an identi- 
cal position of potential (3-methyl)lanthionine-forming resi- 
dues. Of these four lantibiotics, the thioether-bridging 
pattern has only been elucidated completely for lacticin 481. 
It is tempting to speculate that the bridging pattems of SA- 
FF22, salivaricin A and variacin are similar to that deter- 
mined for lacticin 48 I. 

This work indicates that the combination of NMR and MS 
is highly suitable for detailed structure elucidation of lantibio- 
tics, including the determination of the location of (3-methyl)- 
lanthionine bridges. For  a large number of lantibiotics (e.g. 
nisin, actagardine and epilancin K7) NMR can be applied 

directly, while for the lacticin-481 type lantibiotics chemical 
modification is necessary prior to NMR analysis. A similar 
CNBr reaction as used for lacticin 481 can be applied for 
variacin, while SA-FF22 can be cleaved within the overlap- 
ping ring systems as shown before [32]. 

Lacticin 481 shows a new type of bridging pattern not ob- 
served for the other lantibiotics (e.g. [30]), demonstrating the 
large structural variety of lantibiotics. The elucidation of the 
complete covalent structure of lacticin 481 is of importance 
for the clarification of its structure/function relationship and 
for a rational design of mutants. 
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