6 research outputs found

    Identification of an intestinal microbiota signature associated with hospitalized patients with diarrhea

    Get PDF
    As an important global health challenge, diarrhea kills nearly two million people each year. Postinfectious irritable bowel syndrome (IBS) usually manifests itself as the diarrhea-predominant subtype. Small intestinal bacterial overgrowth has been observed more frequently in patients with IBS compared to healthy controls. However, the pathophysiology of IBS is not fully understood, and based on recent evidences, altered gut microbiota is involved in the pathogenesis of IBS. Therefore, we aimed to compare the microbiome in hospitalized patients with diarrhea and healthy individuals. Thirty patients and 10 healthy controls were included into this case–control study. Microbial count was performed using quantitative real-time polymerase chain reaction method using bacterial 16S rRNA gene. Clostridium cluster IV and Bacteroides were significantly more frequent in the patients compared with the healthy individuals (p = 0.02 and 0.023, respectively). However, the quantity of Enterococcus and Bifidobacterium groups were significantly higher in healthy controls than in diarrheal group (p = 0.000076 and 0.001, respectively). The results showed that the number of bacteria in all bacterial groups was significantly different between healthy individuals and diabetic group, whereas the difference between the healthy group and IBS was not significant for Bifidobacterium group. The findings of this study outlined the relationship between diarrhea, IBS, and diabetes disease and bacterial composition. It could be concluded that modifying the bacterial composition by probiotics can be helpful in the control and management of the mentioned disease

    Time-variable expression levels of mazF, atlE, sdrH, and bap genes during biofilm formation in Staphylococcus epidermidis

    Get PDF
    Staphylococcus epidermidis is an opportunistic pathogen causing infections related to the usage of implants and medical devices. Pathogenicity of this microorganism is mainly linked to its capability to form biofilm structures. Biofilm formation vastly depends on several factors including different proteins. We studied the expression levels of three proteins including SdrH, Bap, AtlE, and MazF at different time intervals during the course of biofilm formation. In this study, a catheter-derived S. epidermidis isolate with strong ability of biofilm formation was selected. PCR assay was used to detect sdrH, bap, atlE, and mazF genes in this isolate. Real-time PCR was used to determine the expression levels of these genes after 4, 8, and 20 h during the course of biofilm formation. The studied genes showed different expression levels at different time intervals during biofilm formation by real-time PCR method. Expression levels of atlE and sdrH genes were the highest at 4 h, whereas bap gene showed the highest expression level at 8 h during the course of biofilm formation. In addition, the expression level of mazF gene peaked at 4 h and then progressively decreased at 8 and 20 h. Our results suggest the importance of AtlE, SdrH, and MazF proteins in the establishment and development of the biofilm structure. In addition, our results showed the important role of protein Bap in the accumulation of biofilm structure. Future studies are required to understand the exact role of MazF in the process of biofilm formation

    Evaluation of cell-penetrating peptide–peptide nucleic acid effect in the inhibition of cag A in Helicobacter pylori

    Get PDF
    Helicobacter pylori is the most common cause of chronic infection in human and is associated with gastritis, peptic ulcer disease, and adenocarcinoma of mucosa-associated lymphoid tissue cells. Peptide nucleic acid (PNA) is a synthetic compound, which can inhibit the production of a particular gene. This study aimed to investigate the effect of PNA on inhibiting the expression of cagA. After confirmation of the desired gene by polymerase chain reaction (PCR), the antisense sequence was designed against cagA gene. The minimum inhibitory concentrations of conjugated PNA against H. pylori was determined. The effect of the compound on the expression level of the cagA was investigated in HT29 cell culture using real-time PCR. The results showed 2 and 3 log reduction in bacterial count after 8- and 24-h treatment with 4 and 8 mu M of the compound, respectively. The lowest expression level of the cagA gene was observed at a concentration of 8 mu M after 6 h. The results of this study showed that cell-penetrating peptide antisense can be employed as effective tools for inhibiting the target gene mRNA for various purposes. Moreover, further research is necessary to assess the potency, safety, and pharmacokinetics of CPP-PNAs for clinical prevention and treatment of infections due to H. pylori
    corecore