812 research outputs found

    Future-Proofing Your Microbiology Resource Announcements Genome Assembly for Reproducibility and Clarity.

    Get PDF
    Descriptions of resources, like the genome assemblies reported in Microbiology Resource Announcements, are often frozen at their time of publication, yet they will need to be interpreted in the midst of continually evolving technologies. It is therefore important to ensure that researchers accessing published resources have access to all of the information required to repeat, interpret, and extend these original analyses. Here, we provide a set of suggestions to help make certain that published resources remain useful and repeatable for the foreseeable future

    A complementary view on the growth of directory trees

    Full text link
    Trees are a special sub-class of networks with unique properties, such as the level distribution which has often been overlooked. We analyse a general tree growth model proposed by Klemm {\em et. al.} (2005) to explain the growth of user-generated directory structures in computers. The model has a single parameter qq which interpolates between preferential attachment and random growth. Our analysis results in three contributions: First, we propose a more efficient estimation method for qq based on the degree distribution, which is one specific representation of the model. Next, we introduce the concept of a level distribution and analytically solve the model for this representation. This allows for an alternative and independent measure of qq. We argue that, to capture real growth processes, the qq estimations from the degree and the level distributions should coincide. Thus, we finally apply both representations to validate the model with synthetically generated tree structures, as well as with collected data of user directories. In the case of real directory structures, we show that qq measured from the level distribution are incompatible with qq measured from the degree distribution. In contrast to this, we find perfect agreement in the case of simulated data. Thus, we conclude that the model is an incomplete description of the growth of real directory structures as it fails to reproduce the level distribution. This insight can be generalised to point out the importance of the level distribution for modeling tree growth.Comment: 16 pages, 7 figure

    Functional significance may underlie the taxonomic utility of single amino acid substitutions in conserved proteins

    Get PDF
    We hypothesized that some amino acid substitutions in conserved proteins that are strongly fixed by critical functional roles would show lineage-specific distributions. As an example of an archetypal conserved eukaryotic protein we considered the active site of ß-tubulin. Our analysis identified one amino acid substitution—ß-tubulin F224—which was highly lineage specific. Investigation of ß-tubulin for other phylogenetically restricted amino acids identified several with apparent specificity for well-defined phylogenetic groups. Intriguingly, none showed specificity for “supergroups” other than the unikonts. To understand why, we analysed the ß-tubulin Neighbor-Net and demonstrated a fundamental division between core ß-tubulins (plant-like) and divergent ß-tubulins (animal and fungal). F224 was almost completely restricted to the core ß-tubulins, while divergent ß-tubulins possessed Y224. Thus, our specific example offers insight into the restrictions associated with the co-evolution of ß-tubulin during the radiation of eukaryotes, underlining a fundamental dichotomy between F-type, core ß-tubulins and Y-type, divergent ß-tubulins. More broadly our study provides proof of principle for the taxonomic utility of critical amino acids in the active sites of conserved proteins

    Exponential distribution of long heart beat intervals during atrial fibrillation and their relevance for white noise behaviour in power spectrum

    Full text link
    The statistical properties of heart beat intervals of 130 long-term surface electrocardiogram recordings during atrial fibrillation (AF) are investigated. We find that the distribution of interbeat intervals exhibits a characteristic exponential tail, which is absent during sinus rhythm, as tested in a corresponding control study with 72 healthy persons. The rate of the exponential decay lies in the range 3-12 Hz and shows diurnal variations. It equals, up to statistical uncertainties, the level of the previously uncovered white noise part in the power spectrum, which is also characteristic for AF. The overall statistical features can be described by decomposing the intervals into two statistically independent times, where the first one is associated with a correlated process with 1/f noise characteristics, while the second one belongs to an uncorrelated process and is responsible for the exponential tail. It is suggested to use the rate of the exponential decay as a further parameter for a better classification of AF and for the medical diagnosis. The relevance of the findings with respect to a general understanding of AF is pointed out

    Why highly expressed proteins evolve slowly

    Get PDF
    Much recent work has explored molecular and population-genetic constraints on the rate of protein sequence evolution. The best predictor of evolutionary rate is expression level, for reasons which have remained unexplained. Here, we hypothesize that selection to reduce the burden of protein misfolding will favor protein sequences with increased robustness to translational missense errors. Pressure for translational robustness increases with expression level and constrains sequence evolution. Using several sequenced yeast genomes, global expression and protein abundance data, and sets of paralogs traceable to an ancient whole-genome duplication in yeast, we rule out several confounding effects and show that expression level explains roughly half the variation in Saccharomyces cerevisiae protein evolutionary rates. We examine causes for expression's dominant role and find that genome-wide tests favor the translational robustness explanation over existing hypotheses that invoke constraints on function or translational efficiency. Our results suggest that proteins evolve at rates largely unrelated to their functions, and can explain why highly expressed proteins evolve slowly across the tree of life.Comment: 40 pages, 3 figures, with supporting informatio

    Acoelomorpha: earliest branching bilaterians or deuterostomes?

    Get PDF
    The Acoelomorpha is an animal group comprised by nearly 400 species of misleadingly inconspicuous flatworms. Despite this, acoelomorphs have been at the centre of a heated debate about the origin of bilaterian animals for 150 years. The animal tree of life has undergone major changes during the last decades, thanks largely to the advent of molecular data together with the development of more rigorous phylogenetic methods. There is now a relatively robust backbone of the animal tree of life. However, some crucial nodes remain contentious, especially the node defining the root of Bilateria. Some studies situate Acoelomorpha (and Xenoturbellida) as the sister group of all other bilaterians, while other analyses group them within the deuterostomes which instead suggests that the last common bilaterian ancestor directly gave rise to deuterostomes and protostomes. The resolution of this node will have a profound impact on our understanding of animal/bilaterian evolution. In particular, if acoelomorphs are the sister group to Bilateria, it will point to a simple nature for the first bilaterian. Alternatively, if acoelomorphs are deuterostomes, this will imply that they are the result of secondary simplification. Here, we review the state of this question and provide potential ways to solve this long-standing issue. Specifically, we argue for the benefits of (1) obtaining additional genomic data from acoelomorphs, in particular from taxa with slower evolutionary rates; (2) the development of new tools to analyse the data; and (3) the use of metagenomics or metatranscriptomics data. We believe the combination of these three approaches will provide a definitive answer as to the position of the acoelomorphs in the animal tree of life

    Drivers of genetic diversity in secondary metabolic gene clusters within a fungal species

    Get PDF
    Drivers of genetic diversity in secondary metabolic gene clusters within a fungal speciesFilamentous fungi produce a diverse array of secondary metabolites (SMs) critical for defense, virulence, and communication. The metabolic pathways that produce SMs are found in contiguous gene clusters in fungal genomes, an atypical arrangement for metabolic pathways in other eukaryotes. Comparative studies of filamentous fungal species have shown that SM gene clusters are often either highly divergent or uniquely present in one or a handful of species, hampering efforts to determine the genetic basis and evolutionary drivers of SM gene cluster divergence. Here, we examined SM variation in 66 cosmopolitan strains of a single species, the opportunistic human pathogen Aspergillus fumigatus. Investigation of genome-wide within-species variation revealed 5 general types of variation in SM gene clusters: nonfunctional gene polymorphisms; gene gain and loss polymorphisms; whole cluster gain and loss polymorphisms; allelic polymorphisms, in which different alleles corresponded to distinct, nonhomologous clusters; and location polymorphisms, in which a cluster was found to differ in its genomic location across strains. These polymorphisms affect the function of representative A. fumigatus SM gene clusters, such as those involved in the production of gliotoxin, fumigaclavine, and helvolic acid as well as the function of clusters with undefined products. In addition to enabling the identification of polymorphisms, the detection of which requires extensive genome-wide synteny conservation (e.g., mobile gene clusters and nonhomologous cluster alleles), our approach also implicated multiple underlying genetic drivers, including point mutations, recombination, and genomic deletion and insertion events as well as horizontal gene transfer from distant fungi. Finally, most of the variants that we uncover within A. fumigatus have been previously hypothesized to contribute to SM gene cluster diversity across entire fungal classes and phyla. We suggest that the drivers of genetic diversity operating within a fungal species shown here are sufficient to explain SM cluster macroevolutionary patterns.National Science Foundation (grant number DEB-1442113). Received by AR. U.S. National Library of Medicine training grant (grant number 2T15LM007450). Received by ALL. Conselho Nacional de Desenvolvimento Cientı´fico e 573 Tecnológico. Northern Portugal Regional Operational Programme (grant number NORTE-01- 0145-FEDER-000013). Received by FR. Fundação de Amparo à Pesquisa do 572 Estado de São Paulo. Received by GHG. National Institutes of Health (grant number R01 AI065728-01). Received by NPK. National Science Foundation (grant number IOS-1401682). Received by JHW. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.info:eu-repo/semantics/publishedVersio

    Use of a polyphasic approach including MALDI-TOF MS for identification of Aspergillus section Flavi strains isolated from food commodities in Brazil

    Get PDF
    Brazil is one the largest producers and exporters of food commodities in the world. The evaluation of fungi capable of spoilage and the production mycotoxins in these commodities is an important issue that can be of help in bioeconomic development. The present work aimed to identify fungi of the genus Aspergillus section Flavi isolated from different food commodities in Brazil. Thirty-five fungal isolates belonging to the section Flavi were identified and characterised. Different classic phenotypic and genotypic methodologies were used, as well as a novel approach based on proteomic profiles produced by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS). Type or reference strains for each taxonomic group were included in this study. Three isolates that presented discordant identification patterns were further analysed using the internal transcribed spacer (ITS) region and calmodulin gene sequences. The data obtained from the phenotypic and spectral analyses divide the isolates into three groups, corresponding to taxa closely related to Aspergillus flavus, Aspergillus parasiticus, and Aspergillus tamarii. Final polyphasic fungal identification was achieved by joining data from molecular analyses, classical morphology, and biochemical and proteomic profiles generated by MALDI-TOF MS.Acknowledgments are due to FAPEMIG - Fundacao de Amparo a Pesquisa do Estado de Minas Gerais (Brazil) for financial support. F. C. da Silva extends thanks to CAPES - Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (Brazil) for the PhD grant. C. Santos and N. Lima thank CAPES for the financial support as international visiting professors in the Post-Graduate Programme in Agricultural Microbiology, Federal University of Lavras, Lavras (MG), Brazil

    Inference of reticulate evolutionary histories by maximum likelihood: the performance of information criteria

    Get PDF
    Background: Maximum likelihood has been widely used for over three decades to infer phylogenetic trees from molecular data. When reticulate evolutionary events occur, several genomic regions may have conflicting evolutionary histories, and a phylogenetic network may provide a more adequate model for representing the evolutionary history of the genomes or species. A maximum likelihood (ML) model has been proposed for this case and accounts for both mutation within a genomic region and reticulation across the regions. However, the performance of this model in terms of inferring information about reticulate evolution and properties that affect this performance have not been studied. Results: In this paper, we study the effect of the evolutionary diameter and height of a reticulation event on its identifiability under ML. We find both of them, particularly the diameter, have a significant effect. Further, we find that the number of genes (which can be generalized to the concept of "non-recombining genomic regions") that are transferred across a reticulation edge affects its detectability. Last but not least, a fundamental challenge with phylogenetic networks is that they allow an arbitrary level of complexity, giving rise to the model selection problem. We investigate the performance of two information criteria, the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC), for addressing this problem. We find that BIC performs well in general for controlling the model complexity and preventing ML from grossly overestimating the number of reticulation events. Conclusion: Our results demonstrate that BIC provides a good framework for inferring reticulate evolutionary histories. Nevertheless, the results call for caution when interpreting the accuracy of the inference particularly for data sets with particular evolutionary features

    Phylogenetic Relationships within the Opisthokonta Based on Phylogenomic Analyses of Conserved Single-Copy Protein Domains

    Get PDF
    Many of the eukaryotic phylogenomic analyses published to date were based on alignments of hundreds to thousands of genes. Frequently, in such analyses, the most realistic evolutionary models currently available are often used to minimize the impact of systematic error. However, controversy remains over whether or not idiosyncratic gene family dynamics (i.e., gene duplications and losses) and incorrect orthology assignments are always appropriately taken into account. In this paper, we present an innovative strategy for overcoming orthology assignment problems. Rather than identifying and eliminating genes with paralogy problems, we have constructed a data set comprised exclusively of conserved single-copy protein domains that, unlike most of the commonly used phylogenomic data sets, should be less confounded by orthology miss-assignments. To evaluate the power of this approach, we performed maximum likelihood and Bayesian analyses to infer the evolutionary relationships within the opisthokonts (which includes Metazoa, Fungi, and related unicellular lineages). We used this approach to test 1) whether Filasterea and Ichthyosporea form a clade, 2) the interrelationships of early-branching metazoans, and 3) the relationships among early-branching fungi. We also assessed the impact of some methods that are known to minimize systematic error, including reducing the distance between the outgroup and ingroup taxa or using the CAT evolutionary model. Overall, our analyses support the Filozoa hypothesis in which Ichthyosporea are the first holozoan lineage to emerge followed by Filasterea, Choanoflagellata, and Metazoa. Blastocladiomycota appears as a lineage separate from Chytridiomycota, although this result is not strongly supported. These results represent independent tests of previous phylogenetic hypotheses, highlighting the importance of sophisticated approaches for orthology assignment in phylogenomic analyses. © The Author 2011. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved
    corecore